Back to Search
Start Over
Supramolecular Self-Assembled Hydrogel for Antiviral Therapy through Glycyrrhizic Acid-Enhanced Zinc Absorption and Intracellular Accumulation.
- Source :
-
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2024 Nov 06; Vol. 16 (44), pp. 60027-60044. Date of Electronic Publication: 2024 Oct 28. - Publication Year :
- 2024
-
Abstract
- Respiratory syncytial virus (RSV) is a common pathogen that causes respiratory infections in infants and children worldwide, significantly impacting hospitalization rates in this age group. Zinc ions are considered to have broad-spectrum antiviral potential against RNA viruses, including RSV. However, poor organism absorption and low intracellular accumulation of zinc require repeated high-dose supplementation, which may lead to unnecessary toxic side effects. In this research, a Zn <superscript>2+</superscript> -mediated glycyrrhizinic acid (GA)-based hydrogel (ZnGA Gel) was introduced and potentially developed to be a clinically available drug candidate for RSV therapy. ZnGA Gel was fabricated based on the cooperation of two potential RSV inhibiting molecules (Zn <superscript>2+</superscript> and GA), where Zn <superscript>2+</superscript> promoted self-assembly of GA and reduced its gel concentration and GA promoted zinc absorption and distribution in lung tissue in vivo. The facile construction of supramolecular hydrogel by the self-assembled coordination complex made it an injectable, temperature-sensitive, and pH-responsive controlled-release drug delivery for Zn <superscript>2+</superscript> . Most importantly, GA was observed to enhance organism absorption and intracellular accumulation of Zn <superscript>2+</superscript> and was identified as a zinc ionophore for the first time. GA can colonize on the cell membrane and disturb cell membrane potential, resulting in an enhanced cell membrane permeability. In the presence of GA, more than 4.7-fold increasing Zn <superscript>2+</superscript> concentrations materialized in the intracellular cytoplasm, compared to Zn <superscript>2+</superscript> alone administration. This intracellular Zn <superscript>2+</superscript> accumulation directly boosted the antiviral activities through improved inhibition of RSV replication-associated proteins and significantly inhibited RSV replication. Oral administration of ZnGA Gel on the RSV-infected mice model achieved an ideal therapeutic effect by effectively lowering viral load in the lungs, alleviating lung injury symptoms, and reducing inflammatory cell infiltration at pathological sites. The mechanism involved the inhibition of RSV replication-related proteins, aligning with our in vitro results. Additionally, ZnGA Gel had demonstrated biocompatibility, and reasonable supplementation of zinc was acceptable and effective for infants and children in clinical practice. Hence, the ZnGA Gel developed by us holds promise as an effective anti-RSV medicine in the future.
- Subjects :
- Animals
Mice
Humans
Mice, Inbred BALB C
A549 Cells
Respiratory Syncytial Viruses drug effects
Antiviral Agents pharmacology
Antiviral Agents chemistry
Hydrogels chemistry
Hydrogels pharmacology
Zinc chemistry
Zinc pharmacology
Glycyrrhizic Acid chemistry
Glycyrrhizic Acid pharmacology
Respiratory Syncytial Virus Infections drug therapy
Respiratory Syncytial Virus Infections virology
Respiratory Syncytial Virus Infections metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1944-8252
- Volume :
- 16
- Issue :
- 44
- Database :
- MEDLINE
- Journal :
- ACS applied materials & interfaces
- Publication Type :
- Academic Journal
- Accession number :
- 39466722
- Full Text :
- https://doi.org/10.1021/acsami.4c15042