Back to Search Start Over

[Visual field prediction based on temporal-spatial feature learning].

Authors :
Wang W
Zheng X
Lyu Z
Li N
Chen J
Source :
Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi [Sheng Wu Yi Xue Gong Cheng Xue Za Zhi] 2024 Oct 25; Vol. 41 (5), pp. 1003-1011.
Publication Year :
2024

Abstract

Glaucoma stands as the leading irreversible cause of blindness worldwide. Regular visual field examinations play a crucial role in both diagnosing and treating glaucoma. Predicting future visual field changes can assist clinicians in making timely interventions to manage the progression of this disease. To integrate temporal and spatial features from past visual field examination results and enhance visual field prediction, a convolutional long short-term memory (ConvLSTM) network was employed to construct a predictive model. The predictive performance of the ConvLSTM model was validated and compared with other methods using a dataset of perimetry tests from the Humphrey field analyzer at the University of Washington (UWHVF). Compared to traditional methods, the ConvLSTM model demonstrated higher prediction accuracy. Additionally, the relationship between visual field series length and prediction performance was investigated. In predicting the visual field using the previous three visual field results of past 1.5~6.0 years, it was found that the ConvLSTM model performed better, achieving a mean absolute error of 2.255 dB, a root mean squared error of 3.457 dB, and a coefficient of determination of 0.960. The experimental results show that the proposed method effectively utilizes existing visual field examination results to achieve more accurate visual field prediction for the next 0.5~2.0 years. This approach holds promise in assisting clinicians in diagnosing and treating visual field progression in glaucoma patients.

Details

Language :
Chinese
ISSN :
1001-5515
Volume :
41
Issue :
5
Database :
MEDLINE
Journal :
Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
Publication Type :
Academic Journal
Accession number :
39462669
Full Text :
https://doi.org/10.7507/1001-5515.202310072