Back to Search Start Over

Modification of 316L Stainless Steel, Nickel Titanium, and Cobalt Chromium Surfaces by Irreversible Immobilization of Fibronectin: Towards Improving the Coronary Stent Biocompatibility.

Authors :
Dadafarin H
Konkov E
Vali H
Ali I
Omanovic S
Source :
Molecules (Basel, Switzerland) [Molecules] 2024 Oct 18; Vol. 29 (20). Date of Electronic Publication: 2024 Oct 18.
Publication Year :
2024

Abstract

An extracellular matrix protein, fibronectin (Fn), was covalently immobilized on 316L stainless steel, L605 cobalt chromium (CoCr), and nickel titanium (NiTi) surfaces through an 11-mercaptoundecanoic acid (MUA) self-assembled monolayer (SAM) pre-formed on these surfaces. Polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS) confirmed the presence of Fn on the surfaces. The Fn monolayer attached to the SAM was found to be stable under fluid shear stress. Deconvolution of the Fn amide I band indicated that the secondary structure of Fn changes significantly upon immobilization to the SAM-functionalized metal substrate. Scanning electron microscopy and energy dispersive X-ray analysis revealed that the spacing between Fn molecules on a modified commercial stent surface is approximately 66 nm, which has been reported to be the most appropriate spacing for cell/surface interactions.

Details

Language :
English
ISSN :
1420-3049
Volume :
29
Issue :
20
Database :
MEDLINE
Journal :
Molecules (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
39459295
Full Text :
https://doi.org/10.3390/molecules29204927