Back to Search
Start Over
Modification of 316L Stainless Steel, Nickel Titanium, and Cobalt Chromium Surfaces by Irreversible Immobilization of Fibronectin: Towards Improving the Coronary Stent Biocompatibility.
- Source :
-
Molecules (Basel, Switzerland) [Molecules] 2024 Oct 18; Vol. 29 (20). Date of Electronic Publication: 2024 Oct 18. - Publication Year :
- 2024
-
Abstract
- An extracellular matrix protein, fibronectin (Fn), was covalently immobilized on 316L stainless steel, L605 cobalt chromium (CoCr), and nickel titanium (NiTi) surfaces through an 11-mercaptoundecanoic acid (MUA) self-assembled monolayer (SAM) pre-formed on these surfaces. Polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS) confirmed the presence of Fn on the surfaces. The Fn monolayer attached to the SAM was found to be stable under fluid shear stress. Deconvolution of the Fn amide I band indicated that the secondary structure of Fn changes significantly upon immobilization to the SAM-functionalized metal substrate. Scanning electron microscopy and energy dispersive X-ray analysis revealed that the spacing between Fn molecules on a modified commercial stent surface is approximately 66 nm, which has been reported to be the most appropriate spacing for cell/surface interactions.
Details
- Language :
- English
- ISSN :
- 1420-3049
- Volume :
- 29
- Issue :
- 20
- Database :
- MEDLINE
- Journal :
- Molecules (Basel, Switzerland)
- Publication Type :
- Academic Journal
- Accession number :
- 39459295
- Full Text :
- https://doi.org/10.3390/molecules29204927