Back to Search
Start Over
Genetic Adaptations of the Tibetan Pig to High-Altitude Hypoxia on the Qinghai-Tibet Plateau.
- Source :
-
International journal of molecular sciences [Int J Mol Sci] 2024 Oct 21; Vol. 25 (20). Date of Electronic Publication: 2024 Oct 21. - Publication Year :
- 2024
-
Abstract
- The Tibetan Plateau's distinctive high-altitude environment, marked by extreme cold and reduced oxygen levels, presents considerable survival challenges for both humans and mammals. Natural selection has led to the accumulation of adaptive mutations in Tibetan pigs, enabling them to develop distinctive adaptive phenotypes. Here, we aim to uncover the genetic mechanisms underlying the adaptation of Tibetan pigs to high-altitude hypoxia. Therefore, we conducted a systematic analysis of 140 whole-genome sequencing (WGS) data points from different representing pig populations. Our analysis identified a total of 27,614,561 mutations, including 22,386,319 single-nucleotide variants (SNVs) and 5,228,242 insertions/deletions (INDELs, size < 50 bp). A total of 11% (2,678,569) of the SNVs were newly identified in our project, significantly expanding the dataset of genetic variants in Tibetan pigs. Compared to other pig breeds, Tibetan pigs are uniquely adapted to high-altitude environments, exhibiting the highest genetic diversity and the lowest inbreeding coefficient. Employing the composite of multiple signals (CMS) method, we scanned the genome-wide Darwinian positive selection signals and identified 32,499 Tibetan pig positively selected SNVs (TBPSSs) and 129 selected genes (TBPSGs), including 213 newly discovered genes. Notably, we identified eight genes ( PHACTR1 , SFI1 , EPM2A , SLC30A7 , NKAIN2 , TNNI3K , and PLIN2 ) with strong nature selection signals. They are likely to improve cardiorespiratory function and fat metabolism to help Tibetan pigs become adapted to the high-altitude environment. These findings provide new insights into the genetic mechanisms of high-altitude adaptation and the adaptive phenotypes of Tibetan pigs.
Details
- Language :
- English
- ISSN :
- 1422-0067
- Volume :
- 25
- Issue :
- 20
- Database :
- MEDLINE
- Journal :
- International journal of molecular sciences
- Publication Type :
- Academic Journal
- Accession number :
- 39457085
- Full Text :
- https://doi.org/10.3390/ijms252011303