Back to Search Start Over

Insights into VDAC Gating: Room-Temperature X-ray Crystal Structure of mVDAC-1.

Authors :
Gonzalez-DeWhitt KR
Ermolova N
Wang HK
Hekstra DR
Althoff T
Abramson J
Source :
Biomolecules [Biomolecules] 2024 Sep 24; Vol. 14 (10). Date of Electronic Publication: 2024 Sep 24.
Publication Year :
2024

Abstract

The voltage-dependent anion channel (VDAC) is a crucial mitochondrial protein that facilitates ion and metabolite exchange between mitochondria and the cytosol. Initially characterized over three decades ago, the structure of VDAC-1 was resolved in 2008, revealing a novel β-barrel protein architecture. This study presents the first room-temperature crystal structure of mouse VDAC-1 (mVDAC-1), which is a significant step toward understanding the channel's gating mechanism. The new structure, obtained at a 3.3 Å resolution, demonstrates notable differences from the previously determined cryogenic structure, particularly in the loop regions, which may be critical for the transition between the 'open' and 'closed' states of VDAC-1. Comparative analysis of the root-mean-square deviation (R.M.S.D.) and B-factors between the cryogenic and room-temperature structures suggests that these conformational differences, although subtle, are important for VDAC's functional transitions. The application of electric field-stimulated X-ray crystallography (EF-X) is proposed as a future direction to resolve the 'closed' state of VDAC-1 by inducing voltage-driven conformational changes in order to elucidate the dynamic gating mechanism of VDAC-1. Our findings have profound implications for understanding the molecular basis of VDAC's role in mitochondrial function and its regulation under physiological conditions.

Details

Language :
English
ISSN :
2218-273X
Volume :
14
Issue :
10
Database :
MEDLINE
Journal :
Biomolecules
Publication Type :
Academic Journal
Accession number :
39456136
Full Text :
https://doi.org/10.3390/biom14101203