Back to Search Start Over

Functions of exogenous strigolactone application and strigolactone biosynthesis genes GhMAX3/GhMAX4b in response to drought tolerance in cotton (Gossypium hirsutum L.).

Authors :
Dong J
Ding C
Chen H
Fu H
Pei R
Shen F
Wang W
Source :
BMC plant biology [BMC Plant Biol] 2024 Oct 26; Vol. 24 (1), pp. 1008. Date of Electronic Publication: 2024 Oct 26.
Publication Year :
2024

Abstract

Background: Drought stress markedly constrains plant growth and diminishes crop productivity. Strigolactones (SLs) exert a beneficial influence on plant resilience to drought conditions. Nevertheless, the specific function of SLs in modulating cotton's response to drought stress remains to be elucidated.<br />Results: In this study, we assess the impact of exogenous SL (rac-GR24) administration at various concentrations (0, 1, 5, 10, 20 µM) on cotton growth during drought stress. The findings reveal that cotton seedlings treated with 5 µM exogenous SL exhibit optimal mitigation of growth suppression induced by drought stress. Treatment with 5 µM exogenous SL under drought stress conditions enhances drought tolerance in cotton seedlings by augmenting photosynthetic efficiency, facilitating stomatal closure, diminishing reactive oxygen species (ROS) generation, alleviating membrane lipid peroxidation, enhancing the activity of antioxidant enzymes, elevating the levels of osmoregulatory compounds, and upregulating the expression of drought-responsive genes. The suppression of cotton SL biosynthesis genes, MORE AXILLARY GROWTH 3 (GhMAX3) and GhMAX4b, impairs the drought tolerance of cotton. Conversely, overexpression of GhMAX3 and GhMAX4b in respective Arabidopsis mutants ameliorates the drought-sensitive phenotype in these mutants.<br />Conclusion: These observations underscore that SLs significantly bolster cotton's resistance to drought stress.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
1471-2229
Volume :
24
Issue :
1
Database :
MEDLINE
Journal :
BMC plant biology
Publication Type :
Academic Journal
Accession number :
39455926
Full Text :
https://doi.org/10.1186/s12870-024-05726-w