Back to Search Start Over

Standalone single- and bi-layered human skin 3D models supported by recombinant silk feature native spatial organization.

Authors :
Gkouma S
Bhalla N
Frapard S
Jönsson A
Gürbüz H
Dogan AA
Giacomello S
Duvfa M
Ståhl PL
Widhe M
Hedhammar M
Source :
Biofabrication [Biofabrication] 2024 Nov 05; Vol. 17 (1). Date of Electronic Publication: 2024 Nov 05.
Publication Year :
2024

Abstract

Physiologically relevant human skin models that include key skin cell types can be used for in vitro drug testing, skin pathology studies, or clinical applications such as skin grafts. However, there is still no golden standard for such a model. We investigated the potential of a recombinant functionalized spider silk protein, FN-silk, for the construction of a dermal, an epidermal, and a bilayered skin equivalent (BSE). Specifically, two formats of FN-silk (i.e. 3D network and nanomembrane) were evaluated. The 3D network was used as an elastic ECM-like support for the dermis, and the thin, permeable nanomembrane was used as a basement membrane to support the epidermal epithelium. Immunofluorescence microscopy and spatially resolved transcriptomics analysis demonstrated the secretion of key ECM components and the formation of microvascular-like structures. Furthermore, the epidermal layer exhibited clear stratification and the formation of a cornified layer, resulting in a tight physiologic epithelial barrier. Our findings indicate that the presented FN-silk-based skin models can be proposed as physiologically relevant standalone epidermal or dermal models, as well as a combined BSE.<br /> (Creative Commons Attribution license.)

Details

Language :
English
ISSN :
1758-5090
Volume :
17
Issue :
1
Database :
MEDLINE
Journal :
Biofabrication
Publication Type :
Academic Journal
Accession number :
39454592
Full Text :
https://doi.org/10.1088/1758-5090/ad8b72