Back to Search Start Over

Novel TSPO Ligand 2-Cl-MGV-1 Can Counteract Lipopolysaccharide Induced Inflammatory Response in Murine RAW264.7 Macrophage Cell Line and Lung Models.

Authors :
Obeid F
Kahana M
Dahle B
Monga S
Zohar Y
Weizman A
Gavish M
Source :
Cells [Cells] 2024 Oct 15; Vol. 13 (20). Date of Electronic Publication: 2024 Oct 15.
Publication Year :
2024

Abstract

We assessed the anti-inflammatory activity of the TSPO ligand 2-Cl-MGV-1. Lipopolysaccharide (LPS) was used to induce inflammatory response in a murine RAW264.7 macrophage model (LPS: 100 ng/mL) and a mouse model (C57BL/6) of lung inflammation (LPS: 5 mg/kg). In the macrophage model, the presence of 2-Cl-MGV-1 (25 µM) caused the LPS-induced elevation in nitrite levels to decrease by 70% ( p < 0.0001) and interleukin (IL)-6 by 50% ( p < 0.05). In the mouse model, 2-Cl-MGV-1, administered 30 min before, or co-administered with, an LPS injection, significantly inhibited the elevation in serum IL-5 levels (both by 65%; p < 0.001 and p < 0.01, respectively). 2-Cl-MGV-1 administration to mice 30 min before LPS injection and 1 h thereafter significantly inhibited the elevation in IL-1β serum levels (both by 63%, p < 0.005). IL-6 elevation was inhibited by 73% ( p < 0.005) when 2-Cl-MGV-1 was administered 30 min before LPS, by 60% ( p < 0.05) when co-administered with LPS, and by 64% ( p < 0.05) when administered 1 h after LPS. All cytokine assessments were conducted 6 h post LPS injection. Histological analyses showed decreased leukocyte adherence in the lung tissue of the ligand-treated mice. 2-Cl-MGV-1 administration 30 min prior to exposure to LPS inhibited inflammation-induced open field immobility. The beneficial effect of 2-Cl-MGV-1 suggests its potential as a therapeutic option for inflammatory diseases.

Details

Language :
English
ISSN :
2073-4409
Volume :
13
Issue :
20
Database :
MEDLINE
Journal :
Cells
Publication Type :
Academic Journal
Accession number :
39451220
Full Text :
https://doi.org/10.3390/cells13201702