Back to Search Start Over

Hydrothermal synthesis and characterization of samarium molybdate nanosheets modified multi-walled carbon nanotubes: Real-time analysis of dimetridazole in environmental and biological samples.

Authors :
Li Y
Deng L
Jiang Y
Jiang X
Source :
Chemosphere [Chemosphere] 2024 Nov; Vol. 367, pp. 143616. Date of Electronic Publication: 2024 Oct 23.
Publication Year :
2024

Abstract

Dimetridazole (DMZ) is commonly used as a veterinary drug, resulting in high emissions and environmental pollution and DMZ residues are carcinogenic, genotoxic, and mutagenic to humans. Therefore, it is essential to construct a fast, sensitive and simple sensor to monitor DMZ. In this study, samarium molybdate nanosheets modified multi-walled carbon nanotube composites (SmM/MWCNT) were synthesized to modify GCE for detecting DMZ. The SmM/MWCNT material was also characterized by various analytical and spectroscopic techniques, such as FE-SEM, HRTEM, FT-IR, Raman spectroscopy, XRD, elemental mapping and XPS, to demonstrate the successful synthesis of the composite. Besides, the electrochemical behavior of SmM/MWCNT/GCE for DMZ was also investigated using CV and DPV, and the modified electrode showed good electrochemical sensing performance for DMZ with a low detection limit (0.08 μM), a wide linear range (0.1∼1000 μM), and excellent selectivity. Finally, the SmM/MWCNT/GCE was successfully applied to detect DMZ in environmental and biological samples, and satisfactory recoveries (95%∼105%) were obtained. To the best of our knowledge, the synthesis of SmM/MWCNT and its application in electrochemical sensors are reported for the first time, which demonstrates that it can provide a new route for real-time monitoring of environmental pollutants.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-1298
Volume :
367
Database :
MEDLINE
Journal :
Chemosphere
Publication Type :
Academic Journal
Accession number :
39447769
Full Text :
https://doi.org/10.1016/j.chemosphere.2024.143616