Back to Search Start Over

Histidine-rich calcium-binding protein: a molecular integrator of cardiac excitation-contraction coupling.

Authors :
Mackrill JJ
Source :
The Journal of experimental biology [J Exp Biol] 2024 Oct 15; Vol. 227 (20). Date of Electronic Publication: 2024 Oct 23.
Publication Year :
2024

Abstract

During mammalian cardiomyocyte excitation-contraction coupling, Ca2+ influx through voltage-gated Ca2+ channels triggers Ca2+ release from the sarcoplasmic reticulum (SR) through ryanodine receptor channels. This Ca2+-induced Ca2+ release mechanism controls cardiomyocyte contraction and is exquisitely regulated by SR Ca2+ levels. The histidine-rich calcium-binding protein (HRC) and its aspartic acid-rich paralogue aspolin are high-capacity, low-affinity Ca2+-binding proteins. Aspolin also acts as a trimethylamine N-oxide demethylase. At low intraluminal Ca2+ concentrations, HRC binds to the SR Ca2+-ATPase 2, inhibiting its Ca2+-pumping activity. At high intraluminal Ca2+ levels, HRC interacts with triadin to reduce Ca2+ release through ryanodine receptor channels. This Review analyses the evolution of these Ca2+-regulatory proteins, to gain insights into their roles. It reveals that HRC homologues are present in chordates, annelid worms, molluscs, corals and sea anemones. In contrast, triadin appears to be a chordate innovation. Furthermore, HRC is evolving more rapidly than other cardiac excitation-contraction coupling proteins. This positive selection (or relaxed negative selection) occurs along most of the mammalian HRC protein sequence, with the exception being the C-terminal cysteine-rich region, which is undergoing negative selection. The histidine-rich region of HRC might be involved in pH sensing, as an adaptation to air-breathing, endothermic and terrestrial life. In addition, a cysteine-rich pattern within HRC and aspolin is also found in a wide range of iron-sulfur cluster proteins, suggesting roles in redox reactions and metal binding. The polyaspartic regions of aspolins are likely to underlie their trimethylamine N-oxide demethylase activity, which might be mimicked by the acidic regions of HRCs. These potential roles of HRCs and aspolins await experimental verification.<br />Competing Interests: Competing interests The author declares no competing or financial interests.<br /> (© 2024. Published by The Company of Biologists Ltd.)

Details

Language :
English
ISSN :
1477-9145
Volume :
227
Issue :
20
Database :
MEDLINE
Journal :
The Journal of experimental biology
Publication Type :
Academic Journal
Accession number :
39440591
Full Text :
https://doi.org/10.1242/jeb.247640