Back to Search Start Over

Integration of physiology, genomics and microbiomics analyses reveal the biodegradation mechanism of petroleum hydrocarbons by Medicago sativa L. and growth-promoting bacterium Rhodococcus erythropolis KB1.

Authors :
Zhu N
Sun S
Guo X
Luo W
Zhuang Y
Lei T
Leng F
Chen J
Wang Y
Source :
Bioresource technology [Bioresour Technol] 2025 Jan; Vol. 415, pp. 131659. Date of Electronic Publication: 2024 Oct 18.
Publication Year :
2025

Abstract

Despite the effectiveness of microbial-phytoremediation for remediating total petroleum hydrocarbons (TPH)-contaminated soil, the underlying mechanisms remain elusive. This study investigated the whole-genome and biological activity of Rhodococcus erythropolis KB1, revealing its plant growth promotion (PGP), TPH degradation, and stress resistance capabilities. Phytoremediation (using alfalfa) and plant-microbial remediation (using alfalfa and KB1) were employed to degrade TPH. The highest TPH degradation rate, reaching 95%, was observed with plant-microbial remediation. This is attributed to KB1's ability to promote alfalfa growth, induce the release of signaling molecules to activate plant antioxidant enzymes, actively recruit TPH-degrading bacteria (e.g., Sphingomonas, Pseudomonas, C1-B045), and increase soil nitrogen and phosphorus levels, thereby accelerating TPH degradation by both plants and microorganisms. This study demonstrates that R. erythropolis KB1 holds great potential for enhancing the remediation of TPH-contaminated soil through its multifaceted mechanisms, particularly in plant-microbial remediation strategies, providing valuable theoretical support for the application of this technology.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1873-2976
Volume :
415
Database :
MEDLINE
Journal :
Bioresource technology
Publication Type :
Academic Journal
Accession number :
39426428
Full Text :
https://doi.org/10.1016/j.biortech.2024.131659