Back to Search
Start Over
SMARCD1 is an essential expression-restricted metastasis modifier.
- Source :
-
Communications biology [Commun Biol] 2024 Oct 10; Vol. 7 (1), pp. 1299. Date of Electronic Publication: 2024 Oct 10. - Publication Year :
- 2024
-
Abstract
- Breast cancer is the most frequently diagnosed cancer worldwide, constituting 15% of cases in 2023. The predominant cause of breast cancer-related mortality is metastasis, and a lack of metastasis-targeted therapies perpetuates dismal outcomes for late-stage patients. By using meiotic genetics to study inherited transcriptional network regulation, we have identified, to the best of our knowledge, a new class of "essential expression-restricted" genes as potential candidates for metastasis-targeted therapeutics. Building upon previous work implicating the CCR4-NOT RNA deadenylase complex in metastasis, we demonstrate that RNA-binding proteins NANOS1, PUM2, and CPSF4 also regulate metastatic potential. Using various models and clinical data, we pinpoint Smarcd1 mRNA as a target of all three RNA-BPs. Strikingly, both high and low expression of Smarcd1 correlate with positive clinical outcomes, while intermediate expression significantly reduces the probability of survival. Applying the theory of "essential genes" from evolution, we identify 50 additional genes that require precise expression levels for metastasis to occur. Specifically, small perturbations in Smarcd1 expression significantly reduce metastasis in mouse models and alter splicing programs relevant to the ER+/HER2-enriched breast cancer. Identification subtype-specific essential expression-restricted metastasis modifiers introduces a novel class of genes that, when therapeutically "nudged" in either direction, may significantly improve late-stage breast cancer patients.<br /> (© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
- Subjects :
- Humans
Animals
Female
Mice
Neoplasm Metastasis
RNA-Binding Proteins genetics
RNA-Binding Proteins metabolism
Chromosomal Proteins, Non-Histone genetics
Chromosomal Proteins, Non-Histone metabolism
Cell Line, Tumor
Transcription Factors metabolism
Transcription Factors genetics
Breast Neoplasms genetics
Breast Neoplasms pathology
Breast Neoplasms metabolism
Breast Neoplasms mortality
Gene Expression Regulation, Neoplastic
Subjects
Details
- Language :
- English
- ISSN :
- 2399-3642
- Volume :
- 7
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Communications biology
- Publication Type :
- Academic Journal
- Accession number :
- 39390150
- Full Text :
- https://doi.org/10.1038/s42003-024-07018-3