Back to Search
Start Over
Histone demethylase enzymes KDM5A and KDM5B modulate immune response by suppressing transcription of endogenous retroviral elements.
- Source :
-
BioRxiv : the preprint server for biology [bioRxiv] 2024 Sep 25. Date of Electronic Publication: 2024 Sep 25. - Publication Year :
- 2024
-
Abstract
- Epigenetic factors, including lysine-specific demethylases such as the KDM5 paralogs KDM5A and KDM5B have been implicated in cancer and the regulation of immune responses. Here, we performed a comprehensive multiomic study in cells lacking KDM5A or KDM5B to map changes in transcriptional regulation and chromatin organization. RNA-seq analysis revealed a significant decrease in the expression of Krüppel-associated box containing zinc finger ( KRAB-ZNF ) genes in KDM5A or KDM5B knockout cell lines, which was accompanied by changes ATAC-seq and H3K4me3 ChIP-seq. Pharmacological inhibition of KDM5A and KDM5B catalytic activity with a pan-KDM5 inhibitor, CPI-455, did not significantly change KRAB-ZNF expression, raising the possibility that regulation of KRAB-ZNF expression does not require KDM5A and KDM5B demethylase activity. KRAB-ZNF are recognized suppressors of the transcription of endogenous retroviruses (ERVs) and HAP1 cells with KDM5A or KDM5B gene inactivation showed elevated ERV expression, increased dsRNA levels and elevated levels of immune response genes. Acute degradation of KDM5A using a dTAG system in HAP1 cells led to increased ERV expression, demonstrating that de-repression of ERV genes occurs rapidly after loss of KDM5A. Co-immunoprecipitation of KDM5A revealed an interaction with the Nucleosome Remodeling and Deacetylase (NuRD) complex suggesting that KDM5A and NuRD may act together to regulate the expression of ERVs through KRAB-ZNFs. These findings reveal roles of KDM5A and KDM5B in modulating ERV expression and underscore the therapeutic potential of using degraders of KDM5A and KDM5B to modulate tumor immune responses.
Details
- Language :
- English
- ISSN :
- 2692-8205
- Database :
- MEDLINE
- Journal :
- BioRxiv : the preprint server for biology
- Publication Type :
- Academic Journal
- Accession number :
- 39386707
- Full Text :
- https://doi.org/10.1101/2024.09.23.614494