Back to Search Start Over

Distinct copy number signatures between residual benign and transformed areas of carcinoma ex pleomorphic adenoma.

Authors :
Scarini JF
Sabino WL
de Lima-Souza RA
Egal ESA
Tincani AJ
Gondak R
Kowalski LP
Krepischi ACV
Altemani A
Mariano FV
Source :
Scientific reports [Sci Rep] 2024 Oct 09; Vol. 14 (1), pp. 23645. Date of Electronic Publication: 2024 Oct 09.
Publication Year :
2024

Abstract

The mechanisms involved with the pathogenesis of carcinoma ex pleomorphic adenoma (CXPA) seem to be associated with the accumulation of molecular alterations in the pleomorphic adenoma (PA). In this sense, using array-based comparative genomic hybridization (aCGH) a rare series of 27 cases of CXPA and 14 residual PA (rPA) adjacent to the transformation area, we investigated the profile of the copy number alterations (CNAs) comparing benign residual and transformed areas. The main findings were correlated with the histopathological classification by histologic subtype and degree of invasion. The distribution of losses (p = 0.187) and amplifications (p = 0.172) was not statistically different between rPA and CXPA. The number of gains was increased in the transformed areas compared to the benign residual areas (p = 0.005). PLAG1 gain was maintained along the malignant transformation, as it was observed in both residual PA and CXPA samples, likely being an earlier event during transformation. The amplification of GRB7 and ERBB2 may also be an initial step in the malignant transformation of PA to CXPA (salivary duct carcinoma subtype). Furthermore, the amplification of HMGA2 and RPSAP52 were the most prevalent alterations among the studied samples. It was noteworthy that amplified genes in the transformed areas of the tumors were enriched for biological processes related to immune signaling. In conclusion, our results underscored for the first-time crucial CNAs in CXPA, some of them shared with the residual benign area adjacent to the transformation site. These CNAs included PLAG1 gain, as well as amplification of GRB7, ERBB2, HMGA2, and RPSAP52.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
2045-2322
Volume :
14
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
39384827
Full Text :
https://doi.org/10.1038/s41598-024-63763-9