Back to Search Start Over

Impaired 11β-hydroxysteroid dehydrogenase type 2 activity in kidney disease disrupts 11-oxygenated androgen biosynthesis.

Authors :
Tomkins M
McDonnell T
Cussen L
Sagmeister MS
Oestlund I
Shaheen F
Harper L
Hardy RS
Taylor AE
Gilligan LC
Arlt W
McIlroy M
de Freitas D
Conlon P
Magee C
Denton M
O'Seaghdha C
Snoep JL
Storbeck KH
Sherlock M
O'Reilly MW
Source :
The Journal of clinical endocrinology and metabolism [J Clin Endocrinol Metab] 2024 Oct 09. Date of Electronic Publication: 2024 Oct 09.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

Context: 11-oxygenated androgens are a group of adrenal-derived steroids that require peripheral activation. In vitro data highlight a putative role for 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) in 11-oxygenated androgen biosynthesis, converting 11β-hydroxyandrostenedione (11OHA4) to 11-ketoandrostenedione (11KA4), the direct precursor of the potent androgen 11-ketotestosterone (11KT). As the kidney is the major site of HSD11B2 expression, we hypothesized that patients with chronic kidney disease (CKD) would have reduced 11-oxygenated androgen biosynthesis due to impaired HSD11B2 activity.<br />Objective: To determine the role of HSD11B2 in 11-oxygenated androgen biosynthesis using a human CKD cohort alongside complementary cell culture and computational modeling approaches.<br />Design: Cross-sectional observational study of patients with CKD (n=85) and healthy controls (n=46) measuring serum and urinary concentrations of glucocorticoids, classic and 11-oxygenated androgens by liquid chromatography-tandem mass spectrometry. A computational model of peripheral 11-oxygenated androgen biosynthesis was fitted to the serum data to calculate relative HSD11B2 expression levels for each participant.<br />Results: HSD11B2 activity declined with eGFR, evidenced by higher cortisol (F)/cortisone (E) ratios in CKD patients compared to controls (p<0.0001). Serum concentrations of E, 11KA4, 11KT and 11β-hydroxytestosterone were lower in patients with CKD compared to controls (p<0.0001 for each). A computational model based on enzyme kinetic parameters of HSD11B2, 11β-hydroxysteroid dehydrogenase type 1, 17β-hydroxysteroid dehydrogenase type 2 and aldo-keto reductase 1C3 confirmed HSD11B2 as the key enzyme responsible for reduced 11-oxygenated androgen biosynthesis in CKD. Predicted HSD11B2 expression correlated with eGFR.<br />Conclusion: This is the first in vivo study to confirm a central role for renal HSD11B2 in 11-oxygenated androgen biosynthesis. Determining the clinical implications of this observation for patients with CKD requires further research.<br /> (© The Author(s) 2024. Published by Oxford University Press on behalf of the Endocrine Society.)

Details

Language :
English
ISSN :
1945-7197
Database :
MEDLINE
Journal :
The Journal of clinical endocrinology and metabolism
Publication Type :
Academic Journal
Accession number :
39382395
Full Text :
https://doi.org/10.1210/clinem/dgae714