Back to Search Start Over

TRAF7 determines circadian period through ubiquitination and degradation of DBP.

Authors :
Masuda S
Kurabayashi N
Nunokawa R
Otobe Y
Kozuka-Hata H
Oyama M
Shibata Y
Inoue JI
Koebis M
Aiba A
Yoshitane H
Fukada Y
Source :
Communications biology [Commun Biol] 2024 Oct 08; Vol. 7 (1), pp. 1280. Date of Electronic Publication: 2024 Oct 08.
Publication Year :
2024

Abstract

D-site binding protein, DBP, is a clock-controlled transcription factor and drives daily rhythms of physiological processes through the regulation of an array of genes harboring a DNA binding motif, D-box. DBP protein levels show a circadian oscillation with an extremely robust peak/trough ratio, but it is elusive how the temporal pattern is regulated by post-translational regulation. In this study, we show that DBP protein levels are down-regulated by the ubiquitin-proteasome pathway. Analysis using 19 dominant-negative forms of E2 enzymes have revealed that UBE2G1 and UBE2T mediate the degradation of DBP. A proteomic analysis of DBP-interacting proteins and database screening have identified Tumor necrosis factor Receptor-Associated Factor 7 (TRAF7), a RING-type E3 ligase, that forms a complex with UBE2G1 and/or UBE2T. Ubiquitination analysis have revealed that TRAF7 enhances K48-linked polyubiquitination of DBP in cultured cells. Overexpression of TRAF7 down-regulates DBP protein level, while knockdown of TRAF7 up-regulates DBP in cultured cells. Knockout of TRAF7 in NIH3T3 cells have revealed that TRAF7 mediates the time-of-the-day-dependent regulation of DBP levels. Furthermore, TRAF7 has a period-shortening effect on the cellular clock. Together, TRAF7 plays an important role in circadian clock oscillation through destabilization of DBP.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
2399-3642
Volume :
7
Issue :
1
Database :
MEDLINE
Journal :
Communications biology
Publication Type :
Academic Journal
Accession number :
39379486
Full Text :
https://doi.org/10.1038/s42003-024-07002-x