Back to Search Start Over

Boosting selective Cs + uptake through the modulation of stacking modes in layered niobate-based perovskites.

Authors :
Sun HY
Chen ZH
Hu B
Tang JH
Yang L
Guo YL
Yao YX
Feng ML
Huang XY
Source :
Nature communications [Nat Commun] 2024 Oct 07; Vol. 15 (1), pp. 8681. Date of Electronic Publication: 2024 Oct 07.
Publication Year :
2024

Abstract

Selective separation of <superscript>137</superscript> Cs is significant for the sustainable development of nuclear energy and environmental protection, due to its strong radioactivity and long half-life. However, selective capture of <superscript>137</superscript> Cs <superscript>+</superscript> from radioactive liquid waste is challenging due to strong coulomb interactions between the adsorbents and high-valency metal ions. Herein, we propose a strategy to resolve this issue and achieve specific Cs <superscript>+</superscript> ion recognition and separation by modulating the stacking modes of layered perovskites. We demonstrate that among niobate-based perovskites, ALaNb <subscript>2</subscript> O <subscript>7</subscript> (A = Cs, H, K, and Li), HLaNb <subscript>2</subscript> O <subscript>7</subscript> shows an outstanding selectivity for Cs <superscript>+</superscript> even in the presence of a large amount of competing M <superscript>n+</superscript> ions (M <superscript>n+</superscript>  = K <superscript>+</superscript> , Ca <superscript>2+</superscript> , Mg <superscript>2+</superscript> , Sr <superscript>2+</superscript> , Eu <superscript>3+</superscript> , and Zr <superscript>4+</superscript> ) owing to its suitable void fraction and space shape, brought by the stacking mode of layers. The Cs <superscript>+</superscript> capture mechanism is directly elucidated at molecular level by single-crystal structural analyses and density functional theory calculations. This work not only provides key insights in the design and property optimization of perovskite-type materials for radiocesium separation, but also paves the way for the development of efficient inorganic materials for radionuclides remediation.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
2041-1723
Volume :
15
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
39375328
Full Text :
https://doi.org/10.1038/s41467-024-52920-3