Back to Search Start Over

Role of disturbed wall shear stress in the development of cerebral aneurysms.

Authors :
Shimogonya Y
Fukuda S
Source :
Journal of biomechanics [J Biomech] 2024 Nov; Vol. 176, pp. 112355. Date of Electronic Publication: 2024 Oct 01.
Publication Year :
2024

Abstract

Although the hemodynamics of cerebral aneurysms have been extensively studied using patient-specific computational fluid dynamics techniques, no specific hemodynamic factors characteristic of cerebral aneurysm development have yet been identified. We believe that one problem with previous hemodynamic studies of cerebral aneurysms has been the manner in which control groups were created for comparison with experimental groups. The purpose of this study was to determine hemodynamic factors that correlated with the development of cerebral aneurysms. The control group was established in a manner that differed from those of previous works. This allowed us to demonstrate the effectiveness of our method. We artificially removed aneurysms in the middle cerebral artery bifurcations of nine patients and reconstructed the vessel geometries before the aneurysms had occurred. Pulsatile blood flow simulations were performed using the vessel geometries ipsilateral and contralateral to the sites of aneurysm removal, and hemodynamic metrics were calculated. Use of the ipsilateral and contralateral sides as the experimental and control sites, respectively, allowed us to evaluate statistically the hemodynamic metrics between the two corresponding sites/groups. The results showed that only the normalized transverse wall shear stress (NtransWSS) was significantly higher at the MCA bifurcation ipsilateral to the site of aneurysm removal than at the contralateral bifurcation (p = 0.01). There were no significant differences in the other hemodynamic metrics between the bilateral bifurcations. Our findings imply that multi-directional disturbed wall shear stress, which is detected by the NtransWSS metric, may be one hemodynamic risk factor for the development of cerebral aneurysms.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1873-2380
Volume :
176
Database :
MEDLINE
Journal :
Journal of biomechanics
Publication Type :
Academic Journal
Accession number :
39369626
Full Text :
https://doi.org/10.1016/j.jbiomech.2024.112355