Back to Search
Start Over
A dual program for CRP-mediated regulation in bacterial alarmone (p)ppGpp.
- Source :
-
MBio [mBio] 2024 Oct 04, pp. e0243024. Date of Electronic Publication: 2024 Oct 04. - Publication Year :
- 2024
- Publisher :
- Ahead of Print
-
Abstract
- Gene expression and proper downstream cellular functions upon facing environmental shifts depend on the combined and cooperative regulation of genetic networks. Here, we identified cAMP receptor protein (CRP) as a master regulator of (p)ppGpp (guanosine tetra- and penta-phosphate) homeostasis. Via CRP-mediated direct transcriptional regulation of the (p)ppGpp synthetase/hydrolase RelA and SpoT, cAMP-CRP stimulates pervasive accumulation of (p)ppGpp under glucose-limiting conditions. Notably, CRP exerts a nonclassical property as a translational regulator through YfiQ-dependent acetylation of ribosome protein S1 at K247, which further enhances the translation of RelA, SpoT, and CRP itself. From a synthetic biology perspective, this self-activating feedback loop for (p)ppGpp synthesis highlights the function of C RP- m ediated d ual e nhancement (CMDE) in controlling bacterial gene expression, which enables stable activation of genetic circuits. CMDE applied in synthetic circuits leads to a stable increase in p -coumaric acid, cinnamic acid, and pinosylvin production. Our findings showed that CRP-mediated dual circuits for (p)ppGpp regulation enable robust activation that could address bioproduction and other biotechnological needs.IMPORTANCETranscriptional-translational coordination is fundamental for rapid and efficient gene expression in most bacteria. Here, we uncovered the roles of cAMP-CRP in this process. We found that CRP distinctly increases RelA and SpoT transcription and translation, and that acetylation of S1 at K247 accelerates the self-activation of the leading CRP under glucose-limiting conditions. We further found that elevated (p)ppGpp significantly impedes the formation of the cAMP-CRP complex, an active form responsible for transcriptional activation. A model was created in which cAMP-CRP and (p)ppGpp cooperate to dynamically modulate the efficiency of transcriptional-translational coordination responses to stress. More broadly, productive activation in synthetic circuits was achieved through the application of C RP- m ediated d ual e nhancement (CMDE), promising to inspire new approaches for the development of cell-based biotechnologies.
Details
- Language :
- English
- ISSN :
- 2150-7511
- Database :
- MEDLINE
- Journal :
- MBio
- Publication Type :
- Academic Journal
- Accession number :
- 39365062
- Full Text :
- https://doi.org/10.1128/mbio.02430-24