Back to Search Start Over

A glutathione-activated bismuth-gallic acid metal-organic framework nano-prodrug for enhanced sonodynamic therapy of breast tumor.

Authors :
Gu L
Li X
Chen G
Yang H
Qian H
Pan J
Miao Y
Li Y
Source :
Journal of colloid and interface science [J Colloid Interface Sci] 2025 Feb; Vol. 679 (Pt A), pp. 214-223. Date of Electronic Publication: 2024 Sep 29.
Publication Year :
2025

Abstract

Sonodynamic therapy is a promising, noninvasive, and precise tumor treatment that leverages sonosensitizers to generate cytotoxic reactive oxygen species during ultrasound stimulation. Gallic acid (GA), a natural polyphenol, possesses certain anti-tumor properties, but exhibits significant toxicity toward normal cells, limiting its application in cancer treatment. To overcome this issue, we synthesized a bismuth-gallic acid (BGA), coordinated metal-organic framework (MOF) nano-prodrug. Upon encountering glutathione (GSH), BGA gradually dissociated and depleted GSH, releasing GA, which had anti-tumor effects. As an MOF with semiconductor properties, BGA primarily produced superoxide anion radical upon ultrasound excitation. After the release of GA, GA generated superoxide anion radical and further produced high toxic singlet oxygen under ultrasound stimulation, while further oxidizing and consuming GSH, enhancing sonocatalytic performance. Additionally, the released GA induced cell cycle arrest, ultimately leading to apoptosis. Our results revealed that BGA, as a GSH-activated, metal-polyphenol MOF nano-prodrug, showed potential for use in breast tumor sonodynamic therapy, providing a novel strategy for precise tumor treatment.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1095-7103
Volume :
679
Issue :
Pt A
Database :
MEDLINE
Journal :
Journal of colloid and interface science
Publication Type :
Academic Journal
Accession number :
39362146
Full Text :
https://doi.org/10.1016/j.jcis.2024.09.233