Back to Search
Start Over
Using transcriptome sequencing (RNA-Seq) to screen genes involved in β-glucan biosynthesis and accumulation during oat seed development.
- Source :
-
PeerJ [PeerJ] 2024 Sep 25; Vol. 12, pp. e17804. Date of Electronic Publication: 2024 Sep 25 (Print Publication: 2024). - Publication Year :
- 2024
-
Abstract
- Oat ( Avena sativa L.) is an annual grass that has a high nutritional value and therapeutic benefits. β-glucan is one of the most important nutrients in oats. In this study, we investigated two oat varieties with significant differences in β-glucan content (high β-glucan oat varieties BY and low β-glucan content oat variety DY) during different filling stages. We also studied the transcriptome sequencing of seeds at different filling stages. β-glucan accumulation was highest at days 6-16 in the filling stage. Differentially expressed genes (DEGs) were selected from the dataset of transcriptome sequencing. Among them, three metabolic pathways were closely related to the biosynthesis of β-glucan by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, including xyloglucan:xyloglucosyl transferase activity, starch and sucrose metabolism, and photosynthesis. By analyzing the expression patterns of DEGs, we identified one CslF2 gene and 32 transcription factors. Five modules were thought to be positively correlated with β-glucan accumulation by weighted gene co-expression network analysis (WGCNA). Moreover, the expression levels of candidate genes obtained from the transcriptome sequencing were further validated by quantitative real-time PCR (RT-qPCR) analysis. Our study provides a novel way to identify the regulatory mechanism of β-glucan synthesis and accumulation in oat seeds and offers a possible pathway for the genetic engineering of oat breeding for higher-quality seeds.<br />Competing Interests: The authors declare there are no competing interests.<br /> (©2024 Qi et al.)
- Subjects :
- Gene Expression Profiling methods
RNA-Seq
Sequence Analysis, RNA methods
Plant Proteins genetics
Plant Proteins metabolism
Avena genetics
Avena metabolism
Avena growth & development
Seeds genetics
Seeds metabolism
Seeds growth & development
beta-Glucans metabolism
Gene Expression Regulation, Plant
Transcriptome genetics
Subjects
Details
- Language :
- English
- ISSN :
- 2167-8359
- Volume :
- 12
- Database :
- MEDLINE
- Journal :
- PeerJ
- Publication Type :
- Academic Journal
- Accession number :
- 39346057
- Full Text :
- https://doi.org/10.7717/peerj.17804