Back to Search Start Over

Nonylphenol polybenzoxazines-derived nitrogen-rich porous carbon (NRPC)-supported g-C 3 N 4 /Fe 3 O 4 nanocomposite for efficient high-performance supercapacitor application.

Authors :
Selvaraj K
Yu B
Spontón ME
Kumar P
Veerasamy US
Arulraj A
Mangalaraja RV
Almarhoon ZM
Sayed SRM
Kannaiyan D
Source :
Soft matter [Soft Matter] 2024 Oct 09; Vol. 20 (39), pp. 7957-7969. Date of Electronic Publication: 2024 Oct 09.
Publication Year :
2024

Abstract

In this work, a straightforward and scalable method was used to generate nitrogen-rich porous carbon (NRPC), which was then incorporated with a graphitic carbon nitride and magnetite (g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> ) nanocomposite, fabricated with Fe <subscript>3</subscript> O <subscript>4</subscript> nanoparticles as an eco-friendly and economically viable component. The fabricated NRPC/g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> nanocomposite was applied as an electrode in supercapacitor applications. The synthesized NRPC/g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> nanocomposite, NRPC, g-C <subscript>3</subscript> N <subscript>4</subscript> , and Fe <subscript>3</subscript> O <subscript>4</subscript> were characterized by analytical and morphological analyses. The spherically shaped Fe <subscript>3</subscript> O <subscript>4</subscript> nanoparticles were analyzed by field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). The specific surface area of NRPC/g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> was determined to be 479 m <superscript>2</superscript> g <superscript>-1</superscript> . All the crosslinked composites showed exceptional electrochemical performance and exhibited a pseudo-capacitance behaviour. In comparison to the Fe <subscript>3</subscript> O <subscript>4</subscript> and g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> electrodes, the NRPC/g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> electrode showed a lower charge-transfer resistance and higher capacitance. The prepared NRPC/g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> electrode exhibited the highest specific capacitance of 385 F g <superscript>-1</superscript> at 1 A g <superscript>-1</superscript> compared to Fe <subscript>3</subscript> O <subscript>4</subscript> (112 F g <superscript>-1</superscript> ) and g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> (150 F g <superscript>-1</superscript> ). Furthermore, the cycling efficiency of NRPC/g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> remained at 94.3% even after 2000 cycles. The introduction of NRPC to g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> improved its suitability for application in high-performance supercapacitors.

Details

Language :
English
ISSN :
1744-6848
Volume :
20
Issue :
39
Database :
MEDLINE
Journal :
Soft matter
Publication Type :
Academic Journal
Accession number :
39344978
Full Text :
https://doi.org/10.1039/d4sm00920g