Back to Search
Start Over
Nonylphenol polybenzoxazines-derived nitrogen-rich porous carbon (NRPC)-supported g-C 3 N 4 /Fe 3 O 4 nanocomposite for efficient high-performance supercapacitor application.
- Source :
-
Soft matter [Soft Matter] 2024 Oct 09; Vol. 20 (39), pp. 7957-7969. Date of Electronic Publication: 2024 Oct 09. - Publication Year :
- 2024
-
Abstract
- In this work, a straightforward and scalable method was used to generate nitrogen-rich porous carbon (NRPC), which was then incorporated with a graphitic carbon nitride and magnetite (g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> ) nanocomposite, fabricated with Fe <subscript>3</subscript> O <subscript>4</subscript> nanoparticles as an eco-friendly and economically viable component. The fabricated NRPC/g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> nanocomposite was applied as an electrode in supercapacitor applications. The synthesized NRPC/g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> nanocomposite, NRPC, g-C <subscript>3</subscript> N <subscript>4</subscript> , and Fe <subscript>3</subscript> O <subscript>4</subscript> were characterized by analytical and morphological analyses. The spherically shaped Fe <subscript>3</subscript> O <subscript>4</subscript> nanoparticles were analyzed by field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). The specific surface area of NRPC/g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> was determined to be 479 m <superscript>2</superscript> g <superscript>-1</superscript> . All the crosslinked composites showed exceptional electrochemical performance and exhibited a pseudo-capacitance behaviour. In comparison to the Fe <subscript>3</subscript> O <subscript>4</subscript> and g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> electrodes, the NRPC/g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> electrode showed a lower charge-transfer resistance and higher capacitance. The prepared NRPC/g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> electrode exhibited the highest specific capacitance of 385 F g <superscript>-1</superscript> at 1 A g <superscript>-1</superscript> compared to Fe <subscript>3</subscript> O <subscript>4</subscript> (112 F g <superscript>-1</superscript> ) and g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> (150 F g <superscript>-1</superscript> ). Furthermore, the cycling efficiency of NRPC/g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> remained at 94.3% even after 2000 cycles. The introduction of NRPC to g-C <subscript>3</subscript> N <subscript>4</subscript> /Fe <subscript>3</subscript> O <subscript>4</subscript> improved its suitability for application in high-performance supercapacitors.
Details
- Language :
- English
- ISSN :
- 1744-6848
- Volume :
- 20
- Issue :
- 39
- Database :
- MEDLINE
- Journal :
- Soft matter
- Publication Type :
- Academic Journal
- Accession number :
- 39344978
- Full Text :
- https://doi.org/10.1039/d4sm00920g