Back to Search Start Over

Ionic Liquid-Based Hybrid Gel Microcolumns for Enhanced Narcotic Detection in Portable Micro-Gas Chromatography.

Authors :
Bae SK
Kim SY
Kim YS
Myung S
Seo JH
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2024 Sep 29. Date of Electronic Publication: 2024 Sep 29.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

As the societal issue of increasing global illicit drug usage emerges, there is a growing demand for more portable and versatile drug detectors. Traditional drug analysis techniques such as gas chromatography (GC), liquid chromatography (LC), and Fourier transform infrared spectroscopy (FTIR) face significant challenges in adapting to diverse real-world applications due to their size, cost, and power requirements. While advancements have been made in the development of on-site drug detection methods such as fluorescence, stereoresonance energy transfer (FRET), colorimetric, electrochemical sensing, and lateral flow assays (LFAs), their reliance on specific reactive materials poses limitations in effectively detecting a wide range of narcotics. Therefore, this study proposes the development of specialized microcolumns with optimized stationary phases for next-generation portable microfabricated GC-based narcotic detectors. The stationary phase consists of a hybrid gel incorporating the ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF <subscript>4</subscript> ]) and OV-1. The stationary phase not only enhances interactions between drug analytes but also demonstrates improved separation characteristics among various narcotic substances. Additionally, the principles of the separation results were validated through density functional theory (DFT) analysis, and the effective separation of over seven types of narcotics was demonstrated through temperature optimization. This research lays the groundwork for the advancement of next-generation portable drug analyzers, offering significant potential in the field.

Details

Language :
English
ISSN :
1944-8252
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
39344136
Full Text :
https://doi.org/10.1021/acsami.4c10094