Back to Search
Start Over
Phosphorus-loaded coconut biochar: A novel strategy for cadmium remediation and soil fertility enhancement.
- Source :
-
Ecotoxicology and environmental safety [Ecotoxicol Environ Saf] 2024 Oct 15; Vol. 285, pp. 117074. Date of Electronic Publication: 2024 Sep 28. - Publication Year :
- 2024
-
Abstract
- The management of cadmium (Cd) contamination in soils poses a significant environmental challenge. This study investigates the effectiveness of phosphorus (P)-loaded coconut biochar, synthesized at various pyrolysis temperatures (450°C, 500°C, 550°C, and 600°C), in immobilizing Cd and enhancing P availability in soil environments. The biochar underwent a series of treatments including activation and P enrichment, followed by incubation trials to evaluate its performance in Cd immobilization and P bioavailability enhancement across varying soil concentrations (0.5 %, 1.0 %, and 2.0 %) over time periods of 15, 30, and 45 days. Remediation progress was monitored using phytotoxicity assessments with radish (Raphanus sativus) root length as a bioindicator, supplemented by urease activity analyses. Notably, the activation process increased the P loading capacity of biochar produced at 450°C, 500°C, and 550°C by 54.6 %, 72.4 %, and 51.8 %, respectively, while reducing the P retention capacity of biochar prepared at 600°C by 31.0 %. The biochar activated at 550°C presented the highest efficiency in remediating Cd-contaminated soils. Key findings indicate that the enhanced specific surface area and oxygenated functional group content of the activated biochar facilitated Cd adsorption and P uptake. The P-loaded biochar exhibited a substantial adsorption capacity for Cd, particularly effective at lower concentrations, rendering it highly suitable for soil remediation purposes. Additionally, the study revealed that the application of biochar led to an increase in soil pH, resulting in precipitation of Cd as hydroxide species and formation of insoluble complexes with phosphate ions, thereby reducing its bioavailability. In summary, incorporating P-loaded biochar into soil significantly improved soil quality and enhanced Cd passivation in contaminated soils. The utilization of biochar produced at 550°C, which exhibited optimal performance, suggests a practical and sustainable approach for soil remediation. Future research endeavors should prioritize the refinement of the biochar production process to enhance cost-effectiveness while maintaining high P loading efficiency.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024. Published by Elsevier Inc.)
Details
- Language :
- English
- ISSN :
- 1090-2414
- Volume :
- 285
- Database :
- MEDLINE
- Journal :
- Ecotoxicology and environmental safety
- Publication Type :
- Academic Journal
- Accession number :
- 39342758
- Full Text :
- https://doi.org/10.1016/j.ecoenv.2024.117074