Back to Search Start Over

Innovative In Situ Passivation Strategy for High-Efficiency Sb 2 (S,Se) 3 Solar Cells.

Authors :
Zhao Y
Xu W
Wen J
Wang X
Chen X
Che B
Wang H
Gong J
Chen T
Xiao X
Li J
Source :
Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2024 Sep 27, pp. e2410669. Date of Electronic Publication: 2024 Sep 27.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

An effective defect passivation strategy is crucial for enhancing the performance of antimony selenosulfide (Sb <subscript>2</subscript> (S,Se) <subscript>3</subscript> ) solar cells, as it significantly influences charge transport and extraction efficiency. Herein, a convenient and novel in situ passivation (ISP) technique is successfully introduced to enhance the performance of Sb <subscript>2</subscript> (S,Se) <subscript>3</subscript> solar cells, achieving a champion efficiency of 10.81%, which is among the highest recorded for Sb <subscript>2</subscript> (S,Se) <subscript>3</subscript> solar cells to date. The first principles calculations and the experimental data reveal that incorporating sodium selenosulfate in the ISP strategy effectively functions as an in situ selenization, effectively passivating deep-level cation antisite Sb <subscript>Se</subscript> defect within the Sb <subscript>2</subscript> (S,Se) <subscript>3</subscript> films and significantly suppressing non-radiative recombination in the devices. Space-charge-limited current (SCLC), photoluminescence (PL), and transient absorption spectroscopy (TAS) measurements verify the high quality of the passivated films, showing fewer traps and defects. Moreover, the ISP strategy improved the overall quality of the Sb <subscript>2</subscript> (S,Se) <subscript>3</subscript> films, and fine-tuned the energy levels, thereby facilitating enhanced carrier transport. This study thus provides a straightforward and effective method for passivating deep-level defects in Sb <subscript>2</subscript> (S,Se) <subscript>3</subscript> solar cells.<br /> (© 2024 Wiley‐VCH GmbH.)

Details

Language :
English
ISSN :
1521-4095
Database :
MEDLINE
Journal :
Advanced materials (Deerfield Beach, Fla.)
Publication Type :
Academic Journal
Accession number :
39328030
Full Text :
https://doi.org/10.1002/adma.202410669