Back to Search
Start Over
Aβ25-35-induced autophagy and apoptosis are prevented by the CRMP2-derived peptide ST2-104 (R9-CBD3) via a CaMKKβ/AMPK/mTOR signaling hub.
- Source :
-
PloS one [PLoS One] 2024 Sep 26; Vol. 19 (9), pp. e0309794. Date of Electronic Publication: 2024 Sep 26 (Print Publication: 2024). - Publication Year :
- 2024
-
Abstract
- We previously reported that the peptide ST2-104 (CBD3, for Ca2+ channel-binding domain 3), derived from the collapsin response mediator protein 2 (CRMP2)-a cytosolic phosphoprotein, protects neuroblastoma cells against β-amyloid (Aβ) peptide-mediated toxicity through engagement of a phosphorylated CRMP2/NMDAR pathway. Abnormal aggregation of Aβ peptides (e.g., Aβ25-35) leads to programmed cell death (apoptosis) as well autophagy-both of which contribute to Alzheimer's disease (AD) progression. Here, we asked if ST2-104 affects apoptosis and autophagy in SH-SY5Y neuroblastoma challenged with the toxic Aβ25-35 peptide and subsequently mapped the downstream signaling pathways involved. ST2-104 protected SH-SY5Y cells from death following Aβ25-35 peptide challenge by reducing apoptosis and autophagy as well as limiting excessive calcium entry. Cytotoxicity of SHY-SY5Y cells challenged with Aβ25-35 peptide was blunted by ST2-104. The autophagy activator Rapamycin blunted the anti-apoptotic activity of ST2-104. ST2-104 reversed Aβ25-35-induced apoptosis via inhibiting Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ)-mediated autophagy, which was partly enhanced by STO-609 (an inhibitor of CaMKKβ). ST2-104 attenuated neuronal apoptosis by inhibiting autophagy through a CaMKKβ/AMPK/mTOR signaling hub. These findings identify a mechanism whereby, in the face of Aβ25-35, the concerted actions of ST2-104 leads to a reduction in intracellular calcium overload and inhibition of the CaMKKβ/AMPK/mTOR pathway resulting in attenuation of autophagy and cellular apoptosis. These findings define a mechanistic framework for how ST2-104 transduces "outside" (calcium channels) to "inside" signaling (CaMKKβ/AMPK/mTOR) to confer neuroprotection in AD.<br />Competing Interests: The authors have declared that no competing interests exist.<br /> (Copyright: © 2024 Ji et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Subjects :
- Humans
Cell Line, Tumor
Calcium metabolism
Apoptosis drug effects
Amyloid beta-Peptides metabolism
Amyloid beta-Peptides toxicity
Autophagy drug effects
TOR Serine-Threonine Kinases metabolism
Calcium-Calmodulin-Dependent Protein Kinase Kinase metabolism
Peptide Fragments toxicity
Peptide Fragments metabolism
Signal Transduction drug effects
AMP-Activated Protein Kinases metabolism
Intercellular Signaling Peptides and Proteins metabolism
Nerve Tissue Proteins metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 19
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 39325788
- Full Text :
- https://doi.org/10.1371/journal.pone.0309794