Back to Search
Start Over
Design and Implementation of a Proof-of-Concept Robotic-Microfluidic Interface to Bridge Spatial Comprehensive Three-Dimensional Liquid Chromatography with Mass Spectrometry.
- Source :
-
Analytical chemistry [Anal Chem] 2024 Oct 08; Vol. 96 (40), pp. 15859-15864. Date of Electronic Publication: 2024 Sep 26. - Publication Year :
- 2024
-
Abstract
- A proof-of-concept system is presented for the hyphenation of spatial comprehensive three-dimensional liquid chromatography (3D-LC) to mass spectrometry (MS) detection via a robotic-microfluidic interface. A three-dimensional fractal microflow distributor, incorporating 16 parallel RP monolithic capillary columns arranged in a 4 × 4 configuration, was connected to an X-Y-Z robotic system. This setup facilitated the deposition of successive arrays of microdroplets onto an MS target plate. To minimize carryover during droplet deposition, a strategy was implemented in which the distance between the target plate and the capillary was gradually increased during the deposition process. System-level variation in travel time and subsequent flow rates across parallel columns was assessed and translated in retention alignment based on injection of a protein standard. The successful separation of intact proteins was demonstrated through a parallel 4 × 4 column configuration, applying MALDI-MS detection after microdroplet spotting on an MS target plate. Furthermore, the discussion encompasses high-throughput MS imaging detection within the framework of spatial 3D-LC.
Details
- Language :
- English
- ISSN :
- 1520-6882
- Volume :
- 96
- Issue :
- 40
- Database :
- MEDLINE
- Journal :
- Analytical chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 39324864
- Full Text :
- https://doi.org/10.1021/acs.analchem.4c04184