Back to Search
Start Over
DMT1 knockout abolishes ferroptosis induced mitochondrial dysfunction in C. elegans amyloid β proteotoxicity.
- Source :
-
Free radical biology & medicine [Free Radic Biol Med] 2024 Nov 01; Vol. 224, pp. 785-796. Date of Electronic Publication: 2024 Sep 22. - Publication Year :
- 2024
-
Abstract
- Iron is critical for neuronal activity and metabolism, and iron dysregulation alters these functions in age-related neurodegenerative disorders, such as Alzheimer's disease (AD). AD is a chronic neurodegenerative disease characterized by progressive neuronal dysfunction, memory loss and decreased cognitive function. AD patients exhibit elevated iron levels in the brain compared to age-matched non-AD individuals. However, the degree to which iron overload contributes to AD pathogenesis is unclear. Here, we evaluated the involvement of ferroptosis, an iron-dependent cell death process, in mediating AD-like pathologies in C. elegans. Results showed that iron accumulation occurred prior to the loss of neuronal function as worms age. In addition, energetic imbalance was an early event in iron-induced loss of neuronal function. Furthermore, the loss of neuronal function was, in part, due to increased mitochondrial reactive oxygen species mediated oxidative damage, ultimately resulting in ferroptotic cell death. The mitochondrial redox environment and ferroptosis were modulated by pharmacologic processes that exacerbate or abolish iron accumulation both in wild-type worms and worms with increased levels of neuronal amyloid beta (Aβ). However, neuronal Aβ worms were more sensitive to ferroptosis-mediated neuronal loss, and this increased toxicity was ameliorated by limiting the uptake of ferrous iron through knockout of divalent metal transporter 1 (DMT1). In addition, DMT1 knockout completely suppressed phenotypic measures of Aβ toxicity with age. Overall, our findings suggest that iron-induced ferroptosis alters the mitochondrial redox environment to drive oxidative damage when neuronal Aβ is overexpressed. DMT1 knockout abolishes neuronal Aβ-associated pathologies by reducing neuronal iron uptake.<br />Competing Interests: Declaration of competing interest All the authors have no conflict of interest to report.<br /> (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Subjects :
- Animals
Reactive Oxygen Species metabolism
Oxidative Stress
Humans
Gene Knockout Techniques
Caenorhabditis elegans genetics
Caenorhabditis elegans metabolism
Ferroptosis genetics
Mitochondria metabolism
Mitochondria pathology
Mitochondria genetics
Amyloid beta-Peptides metabolism
Amyloid beta-Peptides genetics
Alzheimer Disease metabolism
Alzheimer Disease genetics
Alzheimer Disease pathology
Iron metabolism
Caenorhabditis elegans Proteins genetics
Caenorhabditis elegans Proteins metabolism
Neurons metabolism
Neurons pathology
Subjects
Details
- Language :
- English
- ISSN :
- 1873-4596
- Volume :
- 224
- Database :
- MEDLINE
- Journal :
- Free radical biology & medicine
- Publication Type :
- Academic Journal
- Accession number :
- 39317269
- Full Text :
- https://doi.org/10.1016/j.freeradbiomed.2024.09.034