Back to Search
Start Over
Fuzzy ripple artifact in high resolution fMRI: identification, cause, and mitigation.
- Source :
-
BioRxiv : the preprint server for biology [bioRxiv] 2024 Sep 09. Date of Electronic Publication: 2024 Sep 09. - Publication Year :
- 2024
-
Abstract
- Purpose: High resolution fMRI is a rapidly growing research field focused on capturing functional signal changes across cortical layers. However, the data acquisition is limited by low spatial frequency EPI artifacts; termed here as Fuzzy Ripples. These artifacts limit the practical applicability of acquisition protocols with higher spatial resolution, faster acquisition speed, and they challenge imaging in lower brain areas.<br />Methods: We characterize Fuzzy Ripple artifacts across commonly used sequences and distinguish them from conventional EPI Nyquist ghosts, off-resonance effects, and GRAPPA artifacts. To investigate their origin, we employ dual polarity readouts.<br />Results: Our findings indicate that Fuzzy Ripples are primarily caused by readout-specific imperfections in k-space trajectories, which can be exacerbated by inductive coupling between third-order shims and readout gradients. We also find that these artifacts can be mitigated through complex-valued averaging of dual polarity EPI or by disconnecting the third-order shim coils.<br />Conclusion: The proposed mitigation strategies allow overcoming current limitations in layer-fMRI protocols: (1)Achieving resolutions beyond 0.8mm is feasible, and even at 3T, we achieved 0.53mm voxel functional connectivity mapping.(2)Sub-millimeter sampling acceleration can be increased to allow sub-second TRs and laminar whole brain protocols with up to GRAPPA 8.(3)Sub-millimeter fMRI is achievable in lower brain areas, including the cerebellum.<br />Competing Interests: Conflict of interest: Omer Faruk Gulban is an employee of Brain Innovation (Maastricht, NL). The work presented here may be partly specific to industrial design choices of SIEMENS Healthineers’ UHF scanners. This vendor is used in 83% of all human layer-fMRI papers (source: www.layerfmri.com/papers).
Details
- Language :
- English
- ISSN :
- 2692-8205
- Database :
- MEDLINE
- Journal :
- BioRxiv : the preprint server for biology
- Publication Type :
- Academic Journal
- Accession number :
- 39314458
- Full Text :
- https://doi.org/10.1101/2024.09.04.611294