Back to Search
Start Over
Development and integration of a continuous horizontal belt filter into drug production procedure.
- Source :
-
International journal of pharmaceutics [Int J Pharm] 2024 Dec 05; Vol. 666, pp. 124729. Date of Electronic Publication: 2024 Sep 19. - Publication Year :
- 2024
-
Abstract
- In the pharmaceutical industry, filtration is traditionally carried out in batch mode. However, with the spread of continuous technologies, there is an increasing demand for robust continuous filtration strategies suitable for processing suspensions produced in continuous crystallizers. Accordingly, this study aimed to investigate a lab-scale horizontal conveyor belt filtration approach for pharmaceutical separation purposes for the first time. The newly developed continuous horizontal belt filter (CHBF) was tested under different systems (microcrystalline cellulose (MCC)/water, lactose/ethanol and acetylsalicylic acid (ASA)/water) and diverse conditions. Filtration was robust using a well-defined unimodal particle size distribution MCC in water system, where the residual moisture content varied within narrow limits of 45-52% independently from the process conditions. Besides, the residual moisture content highly depended on the applied solvent and particle size. It could be reduced to below 2% by processing the suspensions of either a volatile solvent (lactose in ethanol) or an aqueous slurry of a large particle size ASA. Finally, the CHBF was connected to a mixed suspension mixed product removal (MSMPR) or a plug flow crystallizer (PFC). The residual moisture content of the CHBF-filtered ASA product and operation characteristics (onset of steady-state) were evaluated in both continuous crystallizer-filter systems. The MSMPR-CHBF system operated with a longer startup period. The size of the in situ-produced crystals was of a similar order magnitude in both systems, resulting in a similar residual moisture content (around 20%). Overall, the tested continuous filter was robust, did not modify the crystal morphology in the examined experimental range, and could be effectively integrated with continuous crystallizers.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-3476
- Volume :
- 666
- Database :
- MEDLINE
- Journal :
- International journal of pharmaceutics
- Publication Type :
- Academic Journal
- Accession number :
- 39306206
- Full Text :
- https://doi.org/10.1016/j.ijpharm.2024.124729