Back to Search Start Over

Pea protein hydrolysate stimulates GLP-1 secretion in NCI-H716 cells via simultaneously activating the sensing receptors CaSR and PepT1.

Authors :
Zhang M
Zhu L
Zhang H
Wang X
Wu G
Source :
Food & function [Food Funct] 2024 Oct 14; Vol. 15 (20), pp. 10316-10322. Date of Electronic Publication: 2024 Oct 14.
Publication Year :
2024

Abstract

Glucagon-like peptide-1 (GLP-1) plays a crucial role in regulating glucose homeostasis by stimulating insulin secretion and suppressing glucagon release. Our previous study observed that pea protein hydrolysate (PPH) exhibited the function of triggering GLP-1 secretion. However, the underlying mechanisms have not been revealed. Herein, the mechanisms of PPH-stimulated GLP-1 secretion were investigated in NCI-H716 cells. The PPH-induced GLP-1 secretion was reduced ( p < 0.05) after adding the sensing receptor antagonists NPS-2143 and 4-AMBA, indicating that activation of both calcium-sensing receptor (CaSR) and peptide-transporter 1 (PepT1) was involved in PPH-triggered GLP-1 release. Moreover, the intracellular Ca <superscript>2+</superscript> level increased by 2.01 times during the PPH-induced GLP-1 secretion. Similarly, the cAMP content also increased by 1.43 times after stimulation by PPH. The RT-qPCR results showed that PPH increased the gene expression of prohormone convertase 1/3 (PCSK-1) by 2.79-fold, which effectively promoted the conversion of proglucagon (GCG) to GLP-1. The specific pathway of PPH-induced GLP-1 secretion may involve both CaSR and PepT1 activation-induced Ca <superscript>2+</superscript> influx and cAMP generation, which effectively enhanced the enzyme activity of prohormone convertase 1/3 (PCSK-1) and ultimately promoted GLP-1 secretion.

Details

Language :
English
ISSN :
2042-650X
Volume :
15
Issue :
20
Database :
MEDLINE
Journal :
Food & function
Publication Type :
Academic Journal
Accession number :
39302035
Full Text :
https://doi.org/10.1039/d4fo01290a