Back to Search
Start Over
Synthesis and evaluation of novel urethane macromonomers for the formulation of fracture tough 3D printable dental materials.
- Source :
-
Journal of the mechanical behavior of biomedical materials [J Mech Behav Biomed Mater] 2024 Dec; Vol. 160, pp. 106737. Date of Electronic Publication: 2024 Sep 10. - Publication Year :
- 2024
-
Abstract
- 3D printing of materials which combine fracture toughness, high modulus and high strength is quite challenging. Most commercially available 3D printing resins contain a mixture of multifunctional (meth)acrylates. The resulting 3D printed materials are therefore brittle and not adapted for the preparation of denture bases. For this reason, this article focuses on toughening by incorporation of triblock copolymers in methacrylate-based materials. In a first step, three urethane dimethacrylates with various alkyl spacer length were synthesized in a one-pot two-step synthesis. Each monomer was combined with 2-phenoxyethyl methacrylate as a monofunctional monomer and a polycaprolactone-polydimethylsiloxane-polycaprolactone triblock copolymer was added as toughener. The formation of nanostructures via self-assembly was proven by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The addition of the triblock copolymer resulted in a strong increase in fracture toughness for all mixtures. The nature of the urethane dimethacrylate had a significant impact on fracture toughness and flexural strength and modulus of the cured materials. Most promising systems were also investigated via dynamic fatigue propagation da/dN measurements, confirming that the toughening also works under dynamic load. By carefully selecting the length of the urethane dimethacrylate spacer and the amount of block copolymer, materials with the desired physical properties could be efficiently formulated. Especially the formulation containing the medium alkyl spacer length (DMA2/PEMA) and 5 wt% BCP1 (block copolymer), exhibits excellent mechanical properties and high fracture toughness.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1878-0180
- Volume :
- 160
- Database :
- MEDLINE
- Journal :
- Journal of the mechanical behavior of biomedical materials
- Publication Type :
- Academic Journal
- Accession number :
- 39298873
- Full Text :
- https://doi.org/10.1016/j.jmbbm.2024.106737