Back to Search
Start Over
Pretraining of 3D image segmentation models for retinal OCT using denoising-based self-supervised learning.
- Source :
-
Biomedical optics express [Biomed Opt Express] 2024 Aug 02; Vol. 15 (9), pp. 5025-5040. Date of Electronic Publication: 2024 Aug 02 (Print Publication: 2024). - Publication Year :
- 2024
-
Abstract
- Deep learning algorithms have allowed the automation of segmentation for many biomarkers in retinal OCTs, enabling comprehensive clinical research and precise patient monitoring. These segmentation algorithms predominantly rely on supervised training and specialised segmentation networks, such as U-Nets. However, they require segmentation annotations, which are challenging to collect and require specialized expertise. In this paper, we explore leveraging 3D self-supervised learning based on image restoration techniques, that allow to pretrain 3D networks with the aim of improving segmentation performance. We test two methods, based on image restoration and denoising. After pretraining on a large 3D OCT dataset, we evaluate our weights by fine-tuning them on two challenging fluid segmentation datasets utilising different amount of training data. The chosen methods are easy to set up while providing large improvements for fluid segmentation, enabling the reduction of the amount of required annotation or an increase in the performance. Overall, the best results were obtained for denoising-based SSL methods, with higher results on both fluid segmentation datasets as well as faster pretraining durations.<br />Competing Interests: Ursula Schmidt-Erfurth: Genentech (F), Kodiak (F), Novartis (F), Apellis (F,C), RetinSight (F,P). Hrvoje Bogunović: Heidelberg Engineering (F), Apellis (F).<br /> (© 2024 Optica Publishing Group.)
Details
- Language :
- English
- ISSN :
- 2156-7085
- Volume :
- 15
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Biomedical optics express
- Publication Type :
- Academic Journal
- Accession number :
- 39296384
- Full Text :
- https://doi.org/10.1364/BOE.524603