Back to Search Start Over

Extracorporeal Photopheresis Enhances the Frequency and Function of Highly Suppressive FoxP3+ Treg Subsets in Heart Transplanted Individuals.

Authors :
Mottola M
Bruzzaniti S
Piemonte E
Lepore MT
Petraio A
Romano R
Castiglione A
Izzo L
Perna F
De Falco C
Brighel F
Formisano L
Gravina MT
Marino M
De Feo M
Matarese G
Galgani M
Source :
Transplantation [Transplantation] 2024 Sep 19. Date of Electronic Publication: 2024 Sep 19.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

Background: Extracorporeal photopheresis (ECP) has emerged as a prophylactic and therapeutic immunomodulatory option for managing acute rejection in heart transplants (HTx). The underlying mechanisms through which ECP exerts its immunomodulatory effects remain under investigation. Regulatory T cells (Treg) are a heterogeneous subset of immune lymphocytes that ensure the maintenance of tissue homeostasis, avoiding graft rejection. The transcription factor forkhead box protein 3 (FoxP3) is an essential molecular marker of Treg, acting as a "master regulator" of their genesis, stability, and functions. No study has investigated whether ECP impacts FoxP3 expression and its highly suppressive variants containing the exon 2 (FoxP3-E2), particularly in HTx.<br />Methods: In the current study, we recruited 14 HTx participants who had undergone ECP therapy. We explored the effect of in vivo ECP on CD4+FoxP3+ Treg frequency and in vitro suppressive function in 8 HTx participants before (T0) and after 3 (T1), 6 (T2), and 12 (T3) mo of treatment. As a control group, we included 4 HTx individuals who had not undergone ECP therapy.<br />Results: We found that ECP increases the frequency of CD4+FoxP3+ Treg subset with highly suppressive phenotype, including CD4+FoxP3-E2+ Treg. At functional levels, we observed that ECP treatment in HTx individuals effectively improves Treg suppressive ability in controlling the proliferation of autologous conventional CD4+ T lymphocytes.<br />Conclusions: Our findings collectively suggest that ECP exerts its immunomodulatory effects in HTx individuals by positively impacting the frequency and regulatory function of the FoxP3+ Treg compartment.<br />Competing Interests: The authors declare no conflicts of interest.<br /> (Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.)

Details

Language :
English
ISSN :
1534-6080
Database :
MEDLINE
Journal :
Transplantation
Publication Type :
Academic Journal
Accession number :
39294864
Full Text :
https://doi.org/10.1097/TP.0000000000005201