Back to Search Start Over

4-Octyl itaconate attenuates renal tubular injury in db/db mice by activating Nrf2 and promoting PGC-1α-mediated mitochondrial biogenesis.

Authors :
Shao M
Chen J
Zhang F
Su Q
Lin X
Wang W
Chen C
Ren H
Zheng S
Hui S
Qin S
Ni Y
Zhong J
Yang J
Source :
Renal failure [Ren Fail] 2024 Dec; Vol. 46 (2), pp. 2403653. Date of Electronic Publication: 2024 Sep 18.
Publication Year :
2024

Abstract

Objectives: The aim of this study was to investigate the mechanism of itaconate's potential effect in diabetic kidney disease.<br />Methods: Renal immune responsive gene 1 (IRG1) levels were measured in db/db mice and streptozotocin (STZ) + high-fat diet (HFD)-induced diabetic mice. Irg1 knockout mice were generated. db/db mice were treated with 4-octyl itaconate (4-OI, 50 mg/kg), a derivative of itaconate, for 4 weeks. Renal function and morphological changes were investigated. Ultrastructural alterations were determined by transmission electron microscopy.<br />Results: Renal IRG1 levels were reduced in two diabetic models. STZ+HFD-treated Irg1 knockout mice exhibited aggravated renal tubular injury and worsened renal function. Treatment with 4-OI lowered urinary albumin-to-creatinine ratio and blood urea nitrogen levels, and restored renal histological changes in db/db mice. It improved mitochondrial damage, increased expressions of peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitochondrial transcription factor A (TFAM) in the renal cortex of db/db mice. These were confirmed in vitro ; 4-OI improved high glucose-induced abnormal mitochondrial morphology and TFAM expression in HK-2 cells, effects that were inhibited by PGC-1α silencing. Moreover, 4-OI reduced the number of apoptotic cells in the renal cortex of db/db mice. Further study showed that 4-OI increased renal Nrf2 expression and decreased oxidative stress levels in db/db mice. In HK-2 cells, 4-OI decreased high glucose-induced mitochondrial ROS production, which was reversed by Nrf2 silencing. Nrf2 depletion also inhibited 4-OI-mediated regulation of PGC-1α, TFAM, and mitochondrial apoptotic protein expressions.<br />Conclusions: 4-OI attenuates renal tubular injury in db/db mice by activating Nrf2 and promoting PGC-1α-mediated mitochondrial biogenesis.

Details

Language :
English
ISSN :
1525-6049
Volume :
46
Issue :
2
Database :
MEDLINE
Journal :
Renal failure
Publication Type :
Academic Journal
Accession number :
39291665
Full Text :
https://doi.org/10.1080/0886022X.2024.2403653