Back to Search Start Over

VSTM2A reverses immunosuppression in colorectal cancer by antagonizing the PD-L1/PD-1 interaction.

Authors :
Dong Y
Liu JJ
Zhou Y
Kang W
Li S
Cheung AHK
Hu Y
Liao R
Wong N
Wong CC
Ng SSM
Yu J
Source :
Molecular therapy : the journal of the American Society of Gene Therapy [Mol Ther] 2024 Nov 06; Vol. 32 (11), pp. 4045-4057. Date of Electronic Publication: 2024 Sep 17.
Publication Year :
2024

Abstract

Immunoglobulin (Ig) VSTM2A (V-set and transmembrane domain containing 2A) is a top-ranked secretory protein frequently silenced during colorectal carcinogenesis; however, its role in immune modulation remains largely unknown. Bioinformatic and immunohistochemistry analysis of human colorectal specimens and Vstm2a <superscript>+/-</superscript> knockout mice indicated that VSTM2A positively correlated with CD8a and immune infiltration in both physiological and pathological conditions. We then utilized liquid chromatography-mass spectrometry to pinpoint programmed death ligand 1 (PD-L1) as a membrane receptor of VSTM2A. A series of in vitro biochemistry assays further revealed the binding pattern and kinetics between VSTM2A and PD-L1 proteins through their IgV domains at a dissociation constant of 0.7-2.5 nM. Recombinant VSTM2A protein inhibited the PD-1/PD-L1 interaction and induced NFAT response element (RE) luciferase activity dose dependently. Furthermore, interleukin (IL)-2 production from DO11.10 T cells upon co-culture with mouse non-T splenocytes was upregulated in the presence of VSTM2A conditioned medium. Finally, tumor killing assay and ex vivo data from human peripheral blood mononuclear cells and autologous dendritic cell-T cell co-culture demonstrated that VSTM2A significantly enhanced immune activation via the release of granzyme B and interferon (IFN)-γ cytokines. In conclusion, our study demonstrates the tumor-extrinsic role of VSTM2A in sterically blocking the PD-L1/PD-1 interaction at a picomole to nanomole affinity, which leads to the enhanced anti-tumor effect of cytotoxic T cells.<br />Competing Interests: Declaration of interests The authors declare no competing interests.<br /> (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1525-0024
Volume :
32
Issue :
11
Database :
MEDLINE
Journal :
Molecular therapy : the journal of the American Society of Gene Therapy
Publication Type :
Academic Journal
Accession number :
39289872
Full Text :
https://doi.org/10.1016/j.ymthe.2024.09.023