Back to Search
Start Over
Altered cellular metabolic pathway and epithelial cell maturation induced by MYO5B defects are partially reversible by LPAR5 activation.
- Source :
-
BioRxiv : the preprint server for biology [bioRxiv] 2024 Sep 08. Date of Electronic Publication: 2024 Sep 08. - Publication Year :
- 2024
-
Abstract
- Functional loss of the motor protein, Myosin Vb (MYO5B), induces various defects in intestinal epithelial function and causes a congenital diarrheal disorder, microvillus inclusion disease (MVID). Utilizing the MVID model mice, Vil1-Cre <superscript>ERT2</superscript> ;Myo5b <superscript>flox/flox</superscript> (MYO5BΔIEC) and Vil1-Cre <superscript>ERT2</superscript> ;Myo5b <superscript>flox/G519R</superscript> (MYO5B(G519R)), we previously reported that functional MYO5B loss disrupts progenitor cell differentiation and enterocyte maturation that result in villus blunting and deadly malabsorption symptoms. In this study, we determined that both absence and a point mutation of MYO5B impair lipid metabolism and alter mitochondrial structure, which may underlie the progenitor cell malfunction observed in MVID intestine. Along with a decrease in fatty acid oxidation, the lipogenesis pathway was enhanced in the MYO5BΔIEC small intestine. Consistent with these observations in vivo , RNA-sequencing of enteroids generated from two MVID mouse strains showed similar downregulation of energy metabolic enzymes, including mitochondrial oxidative phosphorylation genes. In our previous studies, lysophosphatidic acid (LPA) signaling ameliorates epithelial cell defects in MYO5BΔIEC tissues and enteroids. The present study demonstrates that the highly soluble LPAR5-preferred agonist, Compound-1, improved sodium transporter localization and absorptive function, and tuft cell differentiation in patient-modeled MVID animals that carry independent mutations in MYO5B. Body weight loss in male MYO5B(G519R) mice was ameliorated by Compound-1. These observations suggest that Compound-1 treatment has a trophic effect on intestine with MYO5B functional loss through epithelial cell-autonomous pathways that may improve the differentiation of progenitor cells and the maturation of enterocytes. Targeting LPAR5 may represent an effective therapeutic approach for treatment of MVID symptoms induced by different point mutations in MYO5B.<br />New & Notewothy: This study demonstrates the importance of MYO5B for cellular lipid metabolism and mitochondria in intestinal epithelial cells, a previously unexplored function of MYO5B. Alterations in cellular metabolism may underlie the progenitor cell malfunction observed in microvillus inclusion disease (MVID). To examine the therapeutic potential of progenitor-targeted treatments, the effects of LPAR5-preferred agonist, Compound-1, was investigated utilizing several MVID model mice and enteroids. Our observations suggests that Compound-1 may provide a therapeutic approach for treating MVID.
Details
- Language :
- English
- ISSN :
- 2692-8205
- Database :
- MEDLINE
- Journal :
- BioRxiv : the preprint server for biology
- Publication Type :
- Academic Journal
- Accession number :
- 39282272
- Full Text :
- https://doi.org/10.1101/2024.09.03.610579