Back to Search
Start Over
Microplastic contamination accelerates soil carbon loss through positive priming.
- Source :
-
The Science of the total environment [Sci Total Environ] 2024 Dec 01; Vol. 954, pp. 176273. Date of Electronic Publication: 2024 Sep 14. - Publication Year :
- 2024
-
Abstract
- The priming effect, i.e., the changes in soil organic matter (SOM) decomposition following fresh organic carbon (C) inputs is known to influence C storage in terrestrial ecosystems. Microplastics (particle size <5 mm) are ubiquitous in soils due to the increasing use and often inadequate end-of-life management of plastics. Conventional polyethylene and bio-degradable (PHBV) plastics contain large amounts of C within their molecular structure, which can be assimilated by microorganisms. However, the extent and direction of the potential priming effect induced by microplastics is unclear. As such, we added <superscript>14</superscript> C-labeled glucose to investigate how background polyethylene and PHBV microplastics (1 %, w/w) affect SOM decomposition and its potential microbial mechanisms in a short-term. The cumulative CO <subscript>2</subscript> emission in soil contaminated with PHBV was 42-53 % higher than under Polyethylene contaminated soil after 60-day incubation. Addition of glucose increased SOM decomposition and induced a positive priming effect, as a consequence, caused a negative net soil C balance (-59 to -132 μg C g <superscript>-1</superscript> soil) regardless of microplastic types. K-strategists dominated in the PHBV-contaminated soils and induced 72 % higher positive priming effects as compared to Polyethylene-contaminated soils (160 vs. 92 μg C g <superscript>-1</superscript> soil). This was attributed to the enhanced decomposition of recalcitrant SOM to acquire nitrogen. The stronger priming effect associated in PHBVs can be attributed to cooperative decomposition among fungi and bacteria, which metabolize more recalcitrant C in PHBV. Moreover, comparatively higher calorespirometric ratios, lower substrate use efficiency, and larger enzyme activity but shorter turnover time of enzymes indicated that soil contaminated with PHBV release more energy, and have a more efficient microbial catabolism and are more efficient in SOM decomposition and nutrient resource uptake. Overall, microplastics, (especially bio-degradable microplastics) can alter biogeochemical cycles with significant negative consequences for C sequestration via increasing SOM decomposition in agricultural soils and for regional and global C budgets.<br />Competing Interests: Declaration of competing interest The authors declare they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024. Published by Elsevier B.V.)
- Subjects :
- Soil Pollutants analysis
Soil chemistry
Carbon
Microplastics
Soil Microbiology
Subjects
Details
- Language :
- English
- ISSN :
- 1879-1026
- Volume :
- 954
- Database :
- MEDLINE
- Journal :
- The Science of the total environment
- Publication Type :
- Academic Journal
- Accession number :
- 39278478
- Full Text :
- https://doi.org/10.1016/j.scitotenv.2024.176273