Back to Search Start Over

Optimal Pair Matching Combined with Machine Learning Predicts a Significant Reduction in Myocardial Infarction Risk in African Americans Following Omega-3 Fatty Acid Supplementation.

Authors :
Sun S
Hara A
Johnstone L
Hallmark B
Watkins JC
Thomson CA
Schembre SM
Sergeant S
Umans JG
Yao G
Zhang HH
Chilton FH
Source :
Nutrients [Nutrients] 2024 Sep 02; Vol. 16 (17). Date of Electronic Publication: 2024 Sep 02.
Publication Year :
2024

Abstract

Conflicting clinical trial results on omega-3 highly unsaturated fatty acids (n-3 HUFA) have prompted uncertainty about their cardioprotective effects. While the VITAL trial found no overall cardiovascular benefit from n-3 HUFA supplementation, its substantial African American (AfAm) enrollment provided a unique opportunity to explore racial differences in response to n-3 HUFA supplementation. The current observational study aimed to simulate randomized clinical trial (RCT) conditions by matching 3766 AfAm and 15,553 non-Hispanic White (NHW) individuals from the VITAL trial utilizing propensity score matching to address the limitations related to differences in confounding variables between the two groups. Within matched groups (3766 AfAm and 3766 NHW), n-3 HUFA supplementation's impact on myocardial infarction (MI), stroke, and cardiovascular disease (CVD) mortality was assessed. A weighted decision tree analysis revealed belonging to the n-3 supplementation group as the most significant predictor of MI among AfAm but not NHW. Further logistic regression using the LASSO method and bootstrap estimation of standard errors indicated n-3 supplementation significantly lowered MI risk in AfAm (OR 0.17, 95% CI [0.048, 0.60]), with no such effect in NHW. This study underscores the critical need for future RCT to explore racial disparities in MI risk associated with n-3 HUFA supplementation and highlights potential causal differences between supplementation health outcomes in AfAm versus NHW populations.

Details

Language :
English
ISSN :
2072-6643
Volume :
16
Issue :
17
Database :
MEDLINE
Journal :
Nutrients
Publication Type :
Academic Journal
Accession number :
39275249
Full Text :
https://doi.org/10.3390/nu16172933