Back to Search
Start Over
Presynaptic Enhancement of Transmission from Nociceptors Expressing Nav1.8 onto Lamina-I Spinothalamic Tract Neurons by Spared Nerve Injury in Mice.
- Source :
-
ENeuro [eNeuro] 2024 Sep 10; Vol. 11 (9). Date of Electronic Publication: 2024 Sep 10 (Print Publication: 2024). - Publication Year :
- 2024
-
Abstract
- Alteration of synaptic function in the dorsal horn (DH) has been implicated as a cellular substrate for the development of neuropathic pain, but certain details remain unclear. In particular, the lack of information on the types of synapses that undergo functional changes hinders the understanding of disease pathogenesis from a synaptic plasticity perspective. Here, we addressed this issue by using optogenetic and retrograde tracing ex vivo to selectively stimulate first-order nociceptors expressing Nav1.8 (NRs <superscript>Nav1.8</superscript> ) and record the responses of spinothalamic tract neurons in spinal lamina I (L1-STTNs). We found that spared nerve injury (SNI) increased excitatory postsynaptic currents (EPSCs) in L1-STTNs evoked by photostimulation of NRs <superscript>Nav1.8</superscript> (referred to as Nav1.8-STTN EPSCs). This effect was accompanied by a significant change in the failure rate and paired-pulse ratio of synaptic transmission from NRs <superscript>Nav1.8</superscript> to L1-STTN and in the frequency (not amplitude) of spontaneous EPSCs recorded in L1-STTNs. However, no change was observed in the ratio of AMPA to NMDA receptor-mediated components of Nav1.8-STTN EPSCs or in the amplitude of unitary EPSCs constituting Nav1.8-STTN EPSCs recorded with extracellular Ca <superscript>2+</superscript> replaced by Sr <superscript>2+</superscript> In addition, there was a small increase (approximately 10%) in the number of L1-STTNs showing immunoreactivity for phosphorylated extracellular signal-regulated kinases in mice after SNI compared with sham. Similarly, only a small percentage of L1-STTNs showed a lower action potential threshold after SNI. In conclusion, our results show that SNI induces presynaptic modulation at NR <superscript>Nav1.8</superscript> (consisting of both peptidergic and nonpeptidergic nociceptors) synapses on L1-STTNs forming the lateral spinothalamic tract.<br />Competing Interests: The authors declare no competing financial interests.<br /> (Copyright © 2024 Hung et al.)
- Subjects :
- Animals
Male
Mice
Optogenetics
Mice, Inbred C57BL
Mice, Transgenic
NAV1.8 Voltage-Gated Sodium Channel metabolism
NAV1.8 Voltage-Gated Sodium Channel genetics
Nociceptors metabolism
Nociceptors physiology
Spinothalamic Tracts metabolism
Excitatory Postsynaptic Potentials physiology
Synaptic Transmission physiology
Subjects
Details
- Language :
- English
- ISSN :
- 2373-2822
- Volume :
- 11
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- ENeuro
- Publication Type :
- Academic Journal
- Accession number :
- 39256039
- Full Text :
- https://doi.org/10.1523/ENEURO.0087-24.2024