Back to Search
Start Over
Dysregulated Purinergic Signalling in Fragile X Syndrome Cortical Astrocytes.
- Source :
-
Neuromolecular medicine [Neuromolecular Med] 2024 Sep 10; Vol. 26 (1), pp. 36. Date of Electronic Publication: 2024 Sep 10. - Publication Year :
- 2024
-
Abstract
- The symptoms of fragile X syndrome (FXS), caused by a single gene mutation to Fmr1, have been increasingly linked to disordered astrocyte signalling within the cerebral cortex. We have recently demonstrated that the purinergic signalling pathway, which utilizes nucleoside triphosphates and their metabolites to facilitate bidirectional glial and glial-neuronal interactions, is upregulated in cortical astrocytes derived from the Fmr1 knockout (KO) mouse model of FXS. Heightened Fmr1 KO P2Y purinergic receptor levels were correlated with prolonged intracellular calcium release, elevated synaptogenic protein secretion, and hyperactivity of developing circuits. However, due to the relative lack of sensitive and reproducible quantification methods available for measuring purines and pyrimidines, determining the abundance of these factors in Fmr1 KO astrocytes was limited. We therefore developed a hydrophilic interaction liquid chromatography protocol coupled with mass spectrometry to compare the abundance of intracellular and extracellular purinergic molecules between wildtype and Fmr1 KO mouse astrocytes. Significant differences in the concentrations of UDP, ATP, AMP, and adenosine intracellular stores were found within Fmr1 KO astrocytes relative to WT. The extracellular level of adenosine was also significantly elevated in Fmr1 KO astrocyte-conditioned media in comparison to media collected from WT astrocytes. Glycosylation of the astrocyte membrane-bound CD39 ectonucleotidase, which facilitates ligand breakdown following synaptic release, was also elevated in Fmr1 KO astrocyte cultures. Together, these differences demonstrated further dysregulation of the purinergic signalling system within Fmr1 KO cortical astrocytes, potentially leading to significant alterations in FXS purinergic receptor activation and cellular pathology.<br /> (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Subjects :
- Animals
Mice
Apyrase genetics
Apyrase metabolism
Cells, Cultured
Adenosine Triphosphate metabolism
Culture Media, Conditioned
Adenosine metabolism
Adenosine analogs & derivatives
Receptors, Purinergic P2Y metabolism
Receptors, Purinergic P2Y genetics
Mice, Inbred C57BL
Antigens, CD
Astrocytes metabolism
Fragile X Syndrome genetics
Fragile X Syndrome metabolism
Fragile X Mental Retardation Protein genetics
Fragile X Mental Retardation Protein metabolism
Cerebral Cortex metabolism
Cerebral Cortex cytology
Mice, Knockout
Signal Transduction
Subjects
Details
- Language :
- English
- ISSN :
- 1559-1174
- Volume :
- 26
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Neuromolecular medicine
- Publication Type :
- Academic Journal
- Accession number :
- 39254908
- Full Text :
- https://doi.org/10.1007/s12017-024-08802-4