Back to Search Start Over

PTPRJ is a negative regulator of insulin signaling in neuronal cells, impacting protein biosynthesis, and neurite outgrowth.

Authors :
Ulke J
Chopra S
Kadiri OL
Geserick P
Stein V
Cheshmeh S
Kleinridders A
Kappert K
Source :
Journal of neuroendocrinology [J Neuroendocrinol] 2024 Sep 10, pp. e13446. Date of Electronic Publication: 2024 Sep 10.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

Central insulin resistance has been linked to the development of neurodegenerative diseases and mood disorders. Various proteins belonging to the enzyme family of protein tyrosine phosphatases (PTPs) act as inhibitors of insulin signaling. Protein tyrosine phosphatase receptor type J (PTPRJ) has been identified as a negative regulator in insulin signaling in the periphery. However, the impact of PTPRJ on insulin signaling and its functional role in neuronal cells is largely unknown. Therefore, we generated a Ptprj knockout (KO) cell model in the murine neuroblast cell line Neuro2a by CRISPR-Cas9 gene editing. Ptprj KO cells displayed enhanced insulin signaling, as shown by increased phosphorylation of the insulin receptor (INSR), IRS-1, AKT, and ERK1/2. Further, proximity ligation assays (PLA) revealed both direct interaction of PTPRJ with the INSR and recruitment of this phosphatase to the receptor upon insulin stimulation. By RNA sequencing gene expression analysis, we identified multiple gene clusters responsible for glucose uptake and metabolism, and genes involved in the synthesis of various lipids being mainly upregulated under PTPRJ deficiency. Furthermore, multiple Ca <superscript>2+</superscript> transporters were differentially expressed along with decreased protein biosynthesis. This was accompanied by an increase in endoplasmic reticulum (ER) stress markers. On a functional level, PTPRJ deficiency compromised cell differentiation and neurite outgrowth, suggesting a role in nervous system development. Taken together, PTPRJ emerges as a negative regulator of central insulin signaling, impacting neuronal metabolism and neurite outgrowth.<br /> (© 2024 The Author(s). Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.)

Details

Language :
English
ISSN :
1365-2826
Database :
MEDLINE
Journal :
Journal of neuroendocrinology
Publication Type :
Academic Journal
Accession number :
39253900
Full Text :
https://doi.org/10.1111/jne.13446