Back to Search Start Over

Timeframe of aerobic biodegradation of bioplastics differs under standard conditions and conditions simulating technological composting with biowaste.

Authors :
Zaborowska M
Bernat K
Pszczółkowski B
Cydzik-Kwiatkowska A
Kulikowska D
Wojnowska-Baryła I
Source :
Journal of environmental management [J Environ Manage] 2024 Oct; Vol. 369, pp. 122399. Date of Electronic Publication: 2024 Sep 05.
Publication Year :
2024

Abstract

To determine the actual timeframe of biodegradation, bioplastics (BPs) (based on polylactic acid (PLA), starch (FS), polybutylene succinate (PBS), cellulose (Cel)) were degraded with biowaste (B), which simulates real substrate technological conditions during composting. For comparison, standard conditions (with mature compost (C)) were also applied. The 90-day aerobic tests, both with C or B, were carried out at 58 ± 2 °C. This comparison enables understanding of how BPs behave in real substrate conditions and how C and B affect the time or completeness of degradation based on oxygen consumption (OC) for BPs, the ratio of OC to theoretical oxygen consumption (OC/Th-O <subscript>2</subscript> ), and the decrease in volatile solids (VS). Additionally, for deeper insight into the biodegradation process, microscopic, microbial (based on 16S rDNA), FTIR, and mechanical (tensile strength, elongation at break) analyses were performed. There was no association between the initial mechanical properties of BPs and the time necessary for their biodegradation. BPs lost their mechanical properties and remained visible for a shorter time when degraded with C than with B. OC for Cel, FS, PLA, and PBS biodegradation was 1143, 1654, 1748, and 1211g O <subscript>2</subscript> /kg, respectively, which amounted to 83, 70, 69, and 60% of the theoretical OC (Th-O <subscript>2</subscript> ), respectively. Intensive OC took place at the same time as an intensive decrease in VS content. With C, Cel was most susceptible to biodegradation (completely biodegrading within 11 days), and PLA was least susceptible (requiring 70 days for complete biodegradation). With B, however, the time required for biodegradation was generally longer, and the differences in the time needed for complete biodegradation were smaller, ranging from 45 d (FS) to 75 d (PLA). The use of C or B had the greatest effect on Cel biodegradation (10 d vs 62 d, respectively), and the least effect on PLA (70 d vs 75 d). Specific bacterial and fungal community structures were identified as potential BP biodegraders; the communities depended on the type of BPs and the substrate conditions. In conclusion, the time needed for biodegradation of these BPs varied widely depending on the specific bioplastic and the substrate conditions; the biodegradability decreased in the following order: Cel ≫ FS ≫ PBS ≫ PLA with C and FS ≫ Cel = PBS ≫ PLA with B. The biodegradability ranking of BPs with B was assumed to be ultimate as it simulates the real substrate conditions during composting. However, all of the BPs completely biodegraded in less than 90 days.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1095-8630
Volume :
369
Database :
MEDLINE
Journal :
Journal of environmental management
Publication Type :
Academic Journal
Accession number :
39241591
Full Text :
https://doi.org/10.1016/j.jenvman.2024.122399