Back to Search
Start Over
A portable lateral flow distance-based paper sensor for drinking water hardness test.
- Source :
-
PloS one [PLoS One] 2024 Sep 06; Vol. 19 (9), pp. e0308424. Date of Electronic Publication: 2024 Sep 06 (Print Publication: 2024). - Publication Year :
- 2024
-
Abstract
- Hardness is one of the basic parameters of water, and a high-level hardness of drinking water may be harmful to human health. Thus, it is very important to monitor drinking water hardness. In this work, a portable lateral flow distance-based paper sensor for the semi-quantitative detection of drinking water hardness is demonstrated. In the presence of Ca2+/Mg2+, the hydrogel can be formed via the chelation between sodium alginate and Ca2+/Mg2+, inducing a phase separation process. The viscosity change of the sodium alginate solution is directly related to the Ca2+/Mg2+ concentration and can be determined by the water lateral flow distance on test strips. The sensor successfully realizes the quantification of Ca2+ and Mg2+ in the range of 0-10 mmol L-1 and 4-20 mmol L-1, respectively. The recoveries are found varied from 95% to 108.9%. The water hardness is acceptable for drinking if the Cr values lies in the range of 0.259 to 0.419, and it is high with the Cr value above 0.595. Remarkably, the performance of the sensor is comparable with the commercial kit for real water samples, which avoids the subjective judgment. Overall, this method provides a portable approach for semi-quantitative detection of drinking water hardness with the merits of convenience and low cost, which shows great potential for the potential application.<br />Competing Interests: The authors have declared that no competing interests exist.<br /> (Copyright: © 2024 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 19
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 39240952
- Full Text :
- https://doi.org/10.1371/journal.pone.0308424