Back to Search Start Over

ROS-triggered and macrophage-targeted micelles modulate mitochondria function and polarization in obesity.

Authors :
Cao X
Gao T
Lv F
Wang Y
Li B
Wang X
Source :
Nanotechnology [Nanotechnology] 2024 Sep 06; Vol. 35 (47). Date of Electronic Publication: 2024 Sep 06.
Publication Year :
2024

Abstract

Inflammation involving adipose macrophages is an important inducer of obesity. Regulating macrophages polarization and improving the inflammatory microenvironment of adipose tissue is a new strategy for the treatment of obesity. An amphiphilic chondroitin sulfate phenylborate derivative (CS-PBE) was obtained by modifying the main chain of chondroitin sulfate with the hydrophobic small molecule phenylborate. Using CS-PBE self-assembly, macrophage targeting, reactive oxygen species (ROS) release and celastrol (CLT) encapsulation were achieved. The cytotoxicity, cellular uptake, internalization pathways and transmembrane transport efficiency of CS-PBE micelles were studied in Caco-2 and RAW264.7 cells. Hemolysis and organotoxicity tests were performed to assess the safety of the platform, while its therapeutic efficacy was investigated in high-fat diet-induced obese mice. Multifunctional micelles with macrophage targeting and ROS clearance capabilities were developed to improve the efficacy of CLT in treating obesity. In vitro studies indicated that CS-PBE micelles had better ability to target M1 macrophages, better protective effects on mitochondrial function, better ability to reduce the number of LPS-stimulated M1 macrophages, better ability to reduce the number of M2 macrophages, and better ability to scavenge ROS in inflammatory macrophages. In vivo studies have shown that CS-PBE micelles improve inflammation and significantly reduce toxicity of CLT in the treatment of obesity. In summary, CS-PBE micelles could significantly improve the ability to target inflammatory macrophages and scavenge ROS in adipose tissue to alleviate inflammation, suggesting that CS-PBE micelles are a highly promising approach for the treatment of obesity.<br /> (© 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.)

Details

Language :
English
ISSN :
1361-6528
Volume :
35
Issue :
47
Database :
MEDLINE
Journal :
Nanotechnology
Publication Type :
Academic Journal
Accession number :
39240071
Full Text :
https://doi.org/10.1088/1361-6528/ad7034