Back to Search
Start Over
Overexpression of diglucosyldiacylglycerol synthase leads to daptomycin resistance in Bacillus subtilis .
- Source :
-
Journal of bacteriology [J Bacteriol] 2024 Oct 24; Vol. 206 (10), pp. e0030724. Date of Electronic Publication: 2024 Sep 05. - Publication Year :
- 2024
-
Abstract
- The lipopeptide antibiotic daptomycin exhibits bactericidal activity against Gram-positive bacteria by forming a complex with phosphatidylglycerol (PG) and lipid II in the cell membrane, causing membrane perforation. With the emergence of daptomycin-resistant bacteria, understanding the mechanisms of bacterial resistance to daptomycin has gained great importance. In this study, we aimed to identify the genetic factors contributing to daptomycin resistance in Bacillus subtilis , a model Gram-positive bacterium. Our findings demonstrated that overexpression of ugtP , which encodes diglucosyldiacylglycerol synthase, induces daptomycin resistance in B. subtilis . Specifically, overexpression of ugtP resulted in increased levels of diglucosyldiacylglycerol (Glc <subscript>2</subscript> DAG) and decreased levels of acidic phospholipids cardiolipin and PG, as well as the basic phospholipid lysylphosphatidylglycerol. However, ugtP overexpression did not alter the cell surface charge and the susceptibility to the cationic antimicrobial peptide nisin or the cationic surfactant hexadecyltrimethylammonium bromide. Furthermore, by serial passaging in the presence of daptomycin, we obtained daptomycin-resistant mutants carrying ugtP mutations. These mutants showed increased levels of Glc <subscript>2</subscript> DAG and a >4-fold increase in the minimum inhibitory concentration of daptomycin. These results suggest that increased Glc <subscript>2</subscript> DAG levels, driven by ugtP overexpression, modify the phospholipid composition and confer daptomycin resistance in B. subtilis without altering the cell surface charge of the bacteria.IMPORTANCEDaptomycin is one of the last-resort drugs for the treatment of methicillin-resistant Staphylococcus aureus infections, and the emergence of daptomycin-resistant bacteria has become a major concern. Understanding the mechanism of daptomycin resistance is important for establishing clinical countermeasures against daptomycin-resistant bacteria. In the present study, we found that overexpression of ugtP , which encodes diglucosyldiacylglycerol synthase, induces daptomycin resistance in B. subtilis , a model Gram-positive bacteria. The overexpression of UgtP increased diglucosyldiacylglycerol levels, resulting in altered phospholipid composition and daptomycin resistance. These findings are important for establishing clinical strategies against daptomycin-resistant bacteria, including their detection and management.<br />Competing Interests: The authors declare no conflict of interest.
- Subjects :
- Microbial Sensitivity Tests
Gene Expression Regulation, Bacterial drug effects
Phosphatidylglycerols metabolism
Bacillus subtilis genetics
Bacillus subtilis drug effects
Bacillus subtilis enzymology
Bacillus subtilis metabolism
Daptomycin pharmacology
Drug Resistance, Bacterial genetics
Anti-Bacterial Agents pharmacology
Bacterial Proteins genetics
Bacterial Proteins metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1098-5530
- Volume :
- 206
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Journal of bacteriology
- Publication Type :
- Academic Journal
- Accession number :
- 39235960
- Full Text :
- https://doi.org/10.1128/jb.00307-24