Back to Search Start Over

Establishing and Characterizing the Molecular Profiles, Cellular Features, and Clinical Utility of a Patient-Derived Xenograft Model Using Benign Prostatic Tissues.

Authors :
Polasko AL
Zhang D
Ramraj A
Chiu CL
Garcia-Marques FJ
Bermudez A
Kapp K
Peterson E
Qiu Z
Pollack AS
Zhao H
Pollack JR
Pitteri SJ
Brooks JD
Source :
Laboratory investigation; a journal of technical methods and pathology [Lab Invest] 2024 Oct; Vol. 104 (10), pp. 102129. Date of Electronic Publication: 2024 Aug 31.
Publication Year :
2024

Abstract

Benign prostatic hyperplasia (BPH) is a common condition marked by the enlargement of the prostate gland, which often leads to significant urinary symptoms and a decreased quality of life. The development of clinically relevant animal models is crucial for understanding the pathophysiology of BPH and improving treatment options. This study aims to establish a patient-derived xenograft (PDX) model using benign prostatic tissues to explore the molecular and cellular mechanisms of BPH. PDXs were generated by implanting fresh BPH (transition zone) and paired normal (peripheral zone) prostate tissue from 8 patients under the renal capsule of immunodeficient male mice. Tissue weight, architecture, cellular proliferation, apoptosis, prostate-specific marker expression, and molecular profiles of PDXs were assessed after 1 week and 1, 2, or 3 months of implantation by immunohistochemistry, enzyme-linked immunosorbent assay, transcriptomics, and proteomics. Responses to finasteride, a standard-of-care therapy, were evaluated. PDXs maintained histologic and molecular characteristics of the parental human tissues. BPH, but not normal PDXs, demonstrated significant increases in weight and cellular proliferation, particularly at 1 month. Molecular profiling revealed specific gene and protein expression patterns correlating with BPH pathophysiology. Specifically, an increased immune and stress response was observed at 1 week, followed by increased expression of proliferation markers and BPH-specific stromal signaling molecules, such as BMP5 and CXCL13, at 1 month. Graft stabilization to preimplant characteristics was apparent between 2 and 3 months. Treatment with finasteride reduced proliferation, increased apoptosis, and induced morphologic changes consistent with therapeutic responses observed in human BPH. Our PDX model recapitulates the morphologic, histologic, and molecular features of human BPH, offering a significant advancement in modeling the complex interactions of cell types in BPH microenvironments. These PDXs respond to therapeutic intervention as expected, providing a valuable tool for preclinical testing of new therapeutics that will improve the well-being of BPH patients.<br /> (Copyright © 2024 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1530-0307
Volume :
104
Issue :
10
Database :
MEDLINE
Journal :
Laboratory investigation; a journal of technical methods and pathology
Publication Type :
Academic Journal
Accession number :
39222914
Full Text :
https://doi.org/10.1016/j.labinv.2024.102129