Back to Search Start Over

Effects of LAZY family genes on shoot gravitropism in Lotus japonicus.

Authors :
Xu S
Song S
Jiang H
Wu G
Chen Y
Source :
Plant science : an international journal of experimental plant biology [Plant Sci] 2024 Nov; Vol. 348, pp. 112234. Date of Electronic Publication: 2024 Aug 30.
Publication Year :
2024

Abstract

Plant architecture is an important agronomic trait to determine the biomass and sward structure of forage grass. The IGT family plays a pivotal role in plant gravitropism, encompassing both the gravitropic response and the modulation of plant architecture. We have previously shown that LjLAZY3, one of the IGT genes, plays a distinct role in root gravitropism in L. japonicus. However, the function of LAZY proteins on shoot gravitropism in this species is poorly understood. In this study, we identified nine IGT genes in the L. japonicus genome, which have been categorized into four clades based on the phylogenetic relationships of IGT proteins from 18 legumes: LAZY1, NGR (NEGATIVE GRAVITROPIC RESPONSE OF ROOTS), IGT-LIKE, and TAC1. We found that LAZY genes in the first three clades have demonstrated distinct role for modulating plant gravitropism in L. japonicus with specific impacts as follows. Mutation of the LAZY1 gene, LjLAZY1, defected the gravitropic response of hypocotyl without impacting the main stem's branch angle. In contrast, the overexpression of the NGR gene, LjLAZY3, substantially modulated the shoot's gravitropism, leading to narrower lateral branch angles. Additionally, it enhanced the shoots' gravitropic response. The overexpression of another NGR gene, LjLAZY4, specifically reduced the main stem's branch angle and decreased plant stature without affecting the shoot gravitropic response. The phenotype of IGT-LIKE gene LjLAZY2 overexpression is identical to that of LjLAZY4. While overexpression of the IGT-LIKE gene LjLAZY5 did not induce any observable changes in branch angle, plant height, or gravitropic response. Furthermore, the LjLAZYs were selectively interacted with different BRXL and RLD proteins, which should the important factor to determine their different functions in controlling organ architecture in L. japonicus. Our results deepen understanding of the LjLAZY family and its potential for plant architecture improvement in L. japonicus.<br />Competing Interests: Declaration of Competing Interest The authors declare that there is no conflict of interest.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-2259
Volume :
348
Database :
MEDLINE
Journal :
Plant science : an international journal of experimental plant biology
Publication Type :
Academic Journal
Accession number :
39216696
Full Text :
https://doi.org/10.1016/j.plantsci.2024.112234