Back to Search Start Over

Genetic Architecture and Analysis Practices of Circulating Metabolites in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program.

Authors :
Wang N
Ockerman FP
Zhou LY
Grove ML
Alkis T
Barnard J
Bowler RP
Clish CB
Chung S
Drzymalla E
Evans AM
Franceschini N
Gerszten RE
Gillman MG
Hutton SR
Kelly RS
Kooperberg C
Larson MG
Lasky-Su J
Meyers DA
Woodruff PG
Reiner AP
Rich SS
Rotter JI
Silverman EK
Ramachandran VS
Weiss ST
Wong KE
Wood AC
Wu L
Yarden R
Blackwell TW
Smith AV
Chen H
Raffield LM
Yu B
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2024 Aug 26. Date of Electronic Publication: 2024 Aug 26.
Publication Year :
2024

Abstract

Circulating metabolite levels partly reflect the state of human health and diseases, and can be impacted by genetic determinants. Hundreds of loci associated with circulating metabolites have been identified; however, most findings focus on predominantly European ancestry or single study analyses. Leveraging the rich metabolomics resources generated by the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program, we harmonized and accessibly cataloged 1,729 circulating metabolites among 25,058 ancestrally-diverse samples. We provided recommendations for outlier and imputation handling to process metabolite data, as well as a general analytical framework. We further performed a pooled analysis following our practical recommendations and discovered 1,778 independent loci associated with 667 metabolites. Among 108 novel locus - metabolite pairs, we detected not only novel loci within previously implicated metabolite associated genes, but also novel genes (such as GAB3 and VSIG4 located in the X chromosome) that have putative roles in metabolic regulation. In the sex-stratified analysis, we revealed 85 independent locus-metabolite pairs with evidence of sexual dimorphism, including well-known metabolic genes such as FADS2 , D2HGDH , SUGP1 , UTG2B17 , strongly supporting the importance of exploring sex difference in the human metabolome. Taken together, our study depicted the genetic contribution to circulating metabolite levels, providing additional insight into the understanding of human health.

Details

Language :
English
ISSN :
2692-8205
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Publication Type :
Academic Journal
Accession number :
39211135
Full Text :
https://doi.org/10.1101/2024.07.23.604849