Back to Search Start Over

Spatially sequential co-immobilization of phosphorylases in tiny environments and its application in the synthesis of glucosyl glycerol.

Authors :
Yang W
Sun H
Cui Z
Chen L
Ji Y
Lu F
Liu Y
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Nov; Vol. 279 (Pt 2), pp. 135139. Date of Electronic Publication: 2024 Aug 27.
Publication Year :
2024

Abstract

2-O-(α-d-glucopyranosyl)-sn-glycerol (2-αGG) has been applied in the food industry due to its numerous physiological benefits. The synthesis of 2-αGG can be achieved through a cascade catalytic reaction involving sucrose phosphorylase (SP) and 2-O-α-glucosylglycerol phosphorylase (GGP). However, the low substrate transfer rates between free enzymes have hindered the efficiency of 2-αGG synthesis. To address this issue, a novel technology was developed to prepare sequential multi-enzyme nanoflowers via chemical crosslinking and protein assembly, thus overcoming diffusion limitations. Specifically, spatially sequential co-immobilized enzymes, referred to as SP-GGP@Cap, were created through the targeted assembly of Bifidobacterium adolescentis SP and Marinobacter adhaerens GGP on Ca <superscript>2+</superscript> . This assembly was facilitated by the spontaneous protein reaction between SpyTag and SpyCatcher. Compared to free SP-GGP, SP-GGP@Cap demonstrated improved thermal and pH stability. Moreover, SP-GGP@Cap enhanced the biosynthesis of 2-αGG, achieving a relative concentration of 98 %. Additionally, it retained the ability to catalyze the substrate to yield 61 % relative concentration of 2-αGG even after ten cycles of recycling. This study presents a strategy for the spatially sequential co-immobilization of multiple enzymes in a confined environment and provides an exceptional biocatalyst for the potential industrial production of 2-αGG.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
279
Issue :
Pt 2
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
39208907
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.135139